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A B S T R A C T

The amount and quality of sleep substantially influences health, daily behaviour and overall quality of life. The
main goal of this study was to investigate to what extent sleep structure, as derived from the polysomnographic
(PSG) recordings of nocturnal human sleep, can provide information about sleep quality in terms of correlating
with a set of variables representing the daytime subjective, neurophysiological and cognitive states of a healthy
population without serious sleep problems. We focused on a continuous sleep representation derived from the
probabilistic sleep model (PSM), which describes the microstructure of sleep by a set of sleep probabilistic curves
representing a finite number of sleep microstates. This contrasts with approaches where sleep is characterised by
a set of one-dimensional sleep measures derived from the standard discrete sleep staging. Considering this
continuous sleep representation, we aimed to identify typical sleep profiles that represent the dynamic aspect of
sleep during the night and that are associated with a set of studied daily life quality measures.

Cluster analysis of sleep probabilistic curves has proven to be a helpful tool when identifying specific sleep
temporal profiles, but it faces problems when curves are complex and time misalignment is present. To overcome
these problems, we proposed and validated a novel 2-step iterative clustering and time alignment method. We
compared the quality of alignment and cluster homogeneity produced by the method with existing approaches in
which (i) the time alignment of curves precedes the clustering step, and (ii) time alignment and clustering are
performed simultaneously.

The obtained homogeneous clusters of REM, Wake and Slow Wave Sleep resembled the clustering structure of
subjects with significantly different subjective scores of sleep quality and mood, as well as more objective
cognitive test scores. Moreover, the sleep profiles associated with individual clusters help to better understand
the existing associations between the overnight dynamics of specific sleep states and daily measures.

1. Introduction

Sleep can be described as a continuous process in time in which a finite
set of sleep states are entered during the night. Sleep quality, length and
structure influence human health, mood and performance in daily life [1].

A better understanding of the relationship between sleep structure and
daily life outcomes, either in normal subjects or subjects with sleep dis-
orders, is at the centre of interest in sleep research. Current studies often
investigate this relationship by considering one-dimensional sleep char-
acteristics derived from the standard clinical sleep models; models either
based on Rechtschaffen and Kales sleep scores (R&K) [2] or their novel
version produced by the American Academy of Sleep Medicine (AASM)
[3].1 Examples of such sleep characteristics are the total sleep time, sleep
efficiency, sleep latency, time awake after sleep onset or the number of

awakenings. The relationships between the computed sleep characteristics
and daily life measures are then investigated using standard statistical ap-
proaches; for example the Spearman correlation coefficient [4–7], linear
regression model [8] or cluster analysis [9]. The other group of studies is
focused on predicting outcomes of the daily life measures using the ex-
tracted sleep characteristics. Linear regression models [10] or machine
learning methods have been used in this context [11].

In contrast, the focus of this study is to represent sleep as a con-
tinuous profile, not as a one-dimensional measure compressing all time
information into a single value. Within the set of individual continuous
sleep profiles representing the sleep of each subject, we aim to identify
specific sleep profiles, that is, continuous sleep biomarkers or sleep
bioprofiles, associated with important physiological aspects of sleep. An
important property of these sleep biomarkers would be their
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relationship with different physiological, demographic or daily life
measures. This may include physiological factors (as blood pressure,
pulse rate), the results of questionnaires about subjective sleep quality,
mood, drowsiness or the results of neuropsychological tests focused on,
for example attention, fine motor activity or short-term memory [4].

To meet this goal we consider an alternative way of sleep modelling –
the probabilistic sleep model (PSM) [12,4]. The model characterises sleep
with the probability values of a set of sleep microstates that evolve over the
whole night and allows a description of the dynamic attributes of the sleep
process. By considering the probability values as a function of time, sleep
probabilistic curves can be obtained. These curves then represent the in-
dividual sleep profile of each subject. In turn, the continuous sleep re-
presentation allows us to use advanced methods of mathematical statistics –
functional data analysis (FDA) – to analyse the structure of sleep [13].

To extract and detect associations between representative sleep
profiles and available results of cognitive tests, questionnaires or phy-
siological measures, we applied methods of functional data cluster
analysis on a set of all available sleep probabilistic curves. This ap-
proach allowed us to divide the set of curves into subgroups with
homogeneous profiles. Then, we tested the significance of differences in
daily measures among subjects that belonged to the formed subgroups.

Unfortunately, many methods for functional data clustering en-
counter a problem when analysed curves are misaligned in time. Due to
misalignment, the profiles of clusters might not be well defined and
important features can be missing. This can lead to incorrect clustering
and interpretation of the formed clusters. For example, due to incorrect
clustering, existing relationships between sleep profiles and daily
measures may remain hidden.

In the literature, curve alignment is also known as curve registration
or time warping and several methods to solve this problem were de-
veloped. A solution when the curve alignment precedes the clustering
step usually leads to inferior results, which were also pointed out by
Tang and Müller [14] “…However, in the presence of multiple shape
patterns, time warping is often unidentifiable due to the confounding of
time and shape variation… The dilemma is that we cannot identify the
shape clusters without first removing time variation; on the other hand,
we cannot remove time variation without causing some degree of shape
distortion if the cluster structure is unknown.”

A natural solution of this problem would be a procedure that
combines both the cluster analysis and alignment steps. We applied and
validated the performance of several such existing clustering and time
alignment methods on our sleep curves data; however, we observed
unsatisfactory performance.

Therefore, to tackle the problem of a proper time alignment and
clustering of strongly heterogeneous sleep curves, we proposed and
validated a novel 2-step iterative approach. The method iteratively
combines the dynamic time warping (DTW) [15] based clustering step
with the curve alignment step separately applied to each cluster. The
flexibility of the approach is increased by the possibility to apply a
preferred curve alignment method in the alignment step that operates
on the formed clusters. For datasets with many heterogeneous profiles
we recommend to use methods with restrictions to alignment, for ex-
ample [16,17]. The approaches described in [16,18,19] are appropriate
for data observed over the same time interval or when the misalignment
has a nonlinear character. When the curves are also allowed to be
shifted beyond the observation interval or the misalignment is close to
linear, then alignment techniques from [20] and [21] performed well.

On generated functional data that mimic the sleep process we car-
ried out a series of comparisons when (i) clustering and alignment steps
are applied separately, and (ii) simultaneous curve alignment and
clustering is applied. This validation study confirmed the good perfor-
mance of the 2-step iterative approach, which successfully overcomes
the problem of curve alignment in the case of a dataset with many
heterogeneous and complex profiles.

The description and validation of this novel clustering and align-
ment method represents the additional contribution of the paper.

Finally, returning to our major study objective, we applied the proposed
2-step approach to sleep data with the aim to detect associations between
different profiles of sleep probabilistic curves and daily life measures.

The major findings include the observed relationship between the
improved subjective feeling scores in the morning and the increased
probability for the rapid-eye movement (REM) related sleep microstates
and the decreased probability of awakenings during the night.
Moreover, Wake and S2 related sleep microstates resembled the clus-
tering structure of subjects with significantly different scores of cogni-
tive tests focused on fine-motor activity, concentration and attention.
The results we obtained are in line with the conclusions of the existing
studies. However, the major advantage of the sleep probabilistic curves
analysis is a more thorough insight into the changes of sleep dynamics
over the whole period of night. Such a representation cannot be ob-
tained from approaches operating on measures that compress all the
sleep dynamics information into a single value. This makes the pro-
posed sleep study methodology unique.

The structure of the paper is as follows. Section 2 introduces the sleep
dataset used in this study. Section 3 gives a brief overview of the prob-
abilistic sleep model [12] followed by an introduction to the curve mis-
alignment problem. Then, the methodology for curve alignment and clus-
tering that leads to the proposed 2-step iterative approach is described in
detail. In Section 4.1 the proposed iterative method is validated and com-
pared with the existing approaches on the generated data that mimic the
character of the sleep dataset but have known cluster memberships. In
Section 4.2 the 2-step approach is applied to the sleep dataset. Section 5
provides the discussion and concluding remarks. A detailed description of
the DTW method and three chosen curve alignment approaches are in-
cluded in Appendices A and B. Finally, Appendix C provides details of the
simulation study in Section 4.1.

2. Data

2.1. Sleep dataset

Polysomnographic (PSG) recordings of 146 healthy subjects (66
men and 80 women; average age 51 years) from the European Sleep
Database SIESTA [22] were used in this study. The subjects had no
serious sleep problems and they spent two consecutive nights in the
sleep lab. To avoid possible misinterpretation of the results due to the
first night effect, only data recorded during the second night are con-
sidered in this study.

The PSG measurement started at the subject's usual bedtime after
switching the lights off and terminated at their usual time of getting up
in the morning.

The electroencephalogram (EEG) signal was measured by three
pairs of electrodes – frontal (Fp1-M2, Fp2-M1), central (C3-M2, C4-M1)
and occipital (O1-M2, O2-M1). The reference electrodes M1 and M2
were placed on the mastoid and their average was used for referencing
all EEG channels. Two electrodes for monitoring the submental elec-
tromyogram (EMG) were used and placed above the chin of a subject
with the reference electrode placed below the chin. For more details
about other types of the recorded PSG signals see [22].

EEG data were band-pass filtered into the frequency range from 0.4
to 40 Hz by using the Butterworth filter of order 8 and down-sampled to
100 Hz. The artefact detection procedure of the Somnolyzer24×7 was
applied for detecting eye, muscle, sweat and EEG amplitude related
artefacts [23]. The detected artefacts were excluded from the analysis.

2.2. Daily measures

After awakening, the subjects filled out several questionnaires that
scored their sleep and awakening quality. Subjective sleep and awa-
kening quality were assessed in the morning utilising a standardised
Self-rating Scale (SSA) [24]. The SSA consists of 20 items that yield in
three sub-scores (sleep quality, awakening quality and somatic
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complaints). Four 100 mm visual analogue scales [25] for drive, mood,
affectivity and drowsiness were also used. The self-assessment ques-
tionnaire of well-being [26] consisting of 28 items was filled out by the
subjects in the evening and morning sessions.

Moreover, the subjects performed several neuropsychological tests
for an assessment of attention, attention variability, concentration,
short-term memory and fine motor activity [27]. Finally, the evening
blood pressure and pulse values were recorded in less than two hours
before bedtime and in the morning after sleep. The list of all daily
measures used in the article and their abbreviations can be found in
Table 1.

The daily measures were preprocessed in the following way. First,
they were transformed so that low values indicated good sleep. The
results from several neuropsychological tests and physiological factors
were significantly correlated with age. The age effect was adjusted by
subtracting the nth order polynomial curve ( =n 1, 2, 3) fitted to the
data with the least squares approach.

Moreover, following the research lines presented in our previous
work [4], we considered three factor scores – factor of subjectively
scored sleep and awakening quality (FA1), physiological factor (FA2)
and neuropsychological factor (FA3) - that were obtained as the
dominant factors after applying factor analysis to the set of daily
measures listed in Table 1.

3. Methods

3.1. The probabilistic sleep model (PSM) and sleep probabilistic curves

The PSM [12] characterises the sleep process by probability values
of a finite number of sleep states, called sleep microstates. Le-
wandowski, Rosipal and Dorffner [12] determined the number of mi-
crostates as 20.

The original PSM is based on the EEG signal recorded from the
central pairs of electrodes [12]. In this study we extended the model by
using the EEG signal from three pairs of symmetrically placed left and
right hemisphere electrodes in the frontal, central and occipital regions.
In addition the chin EMG signal was used with the aim to better dis-
criminate the wakefulness and REM sleep stages.

The model training and estimation of the probability values of sleep

microstates were performed in the same way as described in [12]. To
improve the physiological interpretation of the extracted sleep micro-
states, the probability values that represent a link between each sleep
microstate and the standard sleep stages Wake, S1, S2, Slow Wave Sleep
(SWS, stages S3 and S4) and REM were estimated [2,12].

By considering the probability values of a given sleep microstate as
a function of time, the sleep probabilistic curve is obtained (Fig. 1).
These probabilistic curves then represent the subjects’ overnight sleep
profiles.

Before analysis, the extracted sleep probabilistic curves were pre-
processed in the following way. The starting point of each curve was set
to the sleep latency defined as the first occurrence of the three con-
secutive periods of the S1 sleep stage or the first period of the S2 sleep
stage, whichever comes first. Within each sleep microstate separately,
the sleep probabilistic curves were smoothed by functional principal
component analysis with the smoothing covariance surface approach
[28] (Fig. 1). An important by-product of the method is that the profiles
of the smoothed curves are predicted at the end of night and therefore
the curves are defined over the same time interval.

3.2. Curve cluster analysis and time alignment

The goal of functional data cluster analysis is to detect subgroups or
clusters of curves such that the within-cluster similarity is as high as
possible and the curves from different cluster are as dissimilar as pos-
sible [13,29]. Standard clustering methods such as k-means, k-medoids
or hierarchical clustering can be applied to functional data by replacing
the Euclidean distance between vectors by an appropriate distance
measure between the curves [30]. However, the majority of clustering
techniques encounter problems when the time misalignment is present
between curves (Fig. 2, left).

Let us consider a pair of curves X X,1 2 defined over a common time
interval T . Without loss of generality we assume =T [0, 1]. The as-
sumption of smoothness and differentiability of X X,1 2 over the whole
interval T is necessary for the majority of methods that are considered
in this article.

To temporally align (or register) the pair of curves X X,1 2 means to
find a warping function h T T: from a set H of all strictly increasing
bijective functions defined on the interval T such that

h S X X hargmin ( , , )h H 1 2

under the condition of a common start and end point

= =h h(0) 0 and (1) 1

and where S is an arbitrary curve distance criterion. The area under the
squared difference of aligned curves

=S X X h X t X h t( , , ) ( ( ) ( )( )) dt
T1 2 1 2

2
(1)

is one such criterion that is often used [18,16,31]. The operator re-
presents the composition of two functions

=X h t X h t t T( )( ) ( ( )), .

An example of a pair of smoothed sleep probabilistic curves, their
aligned version using the criterion (1), and the estimated warping
function is depicted in Fig. 2.

3.3. Existing methods for curve clustering and alignment

Two general approaches exist for clustering misaligned curves in
time:

(A) the time alignment of the whole set of curves preceding the clus-
tering step,

(B) simultaneous time alignment and clustering.

Table 1
The list of daily measures and their abbreviations used in the
article.

Daily measure Abbreviation

Self-rating Questionnaire for
Sleep quality s_qua
Awakening quality a_qua
Somatic Complaints s_com

Visual Analogue Scale test for
Drive drive
Mood mood
Affectivity aff
Drowsiness drows

Well-being Self Assessment Scale
morning/evening wb_m, wb_e

Diastolic Blood Pressure
morning/evening dia_m, dia_e

Pulse rate
morning/evening pul_m, pul_e

Systolic Blood Pressure
morning/evening sys_m, sys_e

Alphabetical cross-out test
Total score ad_ts
Variability ad_sv
% of errors errp

Fine motor activity test
right/left hand fma_r, fma_l

Numerical Memory Test num_m
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(A) The representative methods belonging to the first approach are
(i) self-modelling time warping (SMTW) [18], (ii) pairwise curve syn-
chronisation (PCS) [16], and (iii) elastic time warping (ETW) [19].
SMTW and ETW align a set of curves to one target curve. The PCS
method aligns each pair of curves separately. The technical details of
these methods are summarised in Appendix B.

In Section 3.2 the assumption of a strictly increasing warping
function was stressed. In its original version, the SMTW method does
not guarantee that the estimated warping function is strictly increasing,
only nondecreasing. Gervini and Gasser [18] solved this problem by
repeating several steps of the algorithm until the condition of a strictly
increasing warping function is met.2 However, considering the real-
world sleep data or simulated data presented in the next section, we
observed that the estimated warping function did not become strictly
monotonic. This occurred although we set the number of repetitions to
1000 or more to evaluate monotonicity.

To solve this problem, we introduced a penalty to the first derivative

of the warping function close to zero (Appendix B). Moreover, to avoid
the alignment of too distant segments of two curves we also considered
a restriction to the distance between the warping function and the real
time. Thus the SMTW method with restriction is denoted as rSMTW. A
similar restriction is included in the PCS method and can also be added
to the ETW algorithm; denoted rETW.

The three discussed methods align all curves at once and then
curves are clustered by the k-means or another preferred clustering
method. However, when curves with heterogeneous profiles are pre-
sent, time alignment applied to a whole set of curves usually fails or
leads to unsatisfactory results. This problem is depicted in Fig. 3 and is
also demonstrated in Appendix C.

(B) Three approaches that simultaneously combine clustering and
time alignment were proposed in the literature and are discussed in this
study. These are (i) the k-mean alignment for curve clustering (KMACC)
method [21], (ii) the joint probabilistic curve clustering and alignment
(JPCCA) [20], and (iii) the truncated version of PCS (tPCS) followed by
the k-means clustering [14].

KMACC and JPCCA assume a linear transformation of time

= + >h t b c b t T( ) ct , 0, ,

Fig. 2. An example of two smoothed sleep probabilistic curves (left plot), their time aligned representation (middle plot) and the corresponding warping function
(right plot). The original time was transformed into the interval [0,1].

Fig. 1. An example of the sleep probabilistic curves (grey) for
20 microstates of a 41-year-old healthy woman. The smoothed
version of the sleep probabilistic curves is depicted in black. In
the title of each subfigure the leading probability value
(transformed to percentage) representing a link between the
sleep microstate and the standard sleep stages is listed.

2 See step (a) – updating warping function, part (ii) of the SMTW algorithm in
[18] or [32].

Z. Rošťáková and R. Rosipal Artificial Intelligence In Medicine 97 (2019) 152–167

155



when solving the curve misalignment problem. This limits the flex-
ibility of the methods to address situations where a nonlinear trans-
formation of time is needed. In addition, in our study we consider the
same time interval for all sleep curves and therefore the only possible
choices for the constants c and b are =c 1 and =b 0, effectively pro-
ducing no alignment. Other values of c or b would annul the property of
the common time interval. Therefore these two methods were not fur-
ther considered in this study.

The only method that belongs to this category and is applicable to
sleep curves is tPCS. In contrast to PCS, the tPCS method takes into
account only pairs of the most similar curves when computing the
global warping function.

3.4. 2-step iterative approach for clustering and alignment

To address the problems of the existing methods for combined
clustering and alignment and to introduce an algorithm with a higher
flexibility of algorithmic choices in the alignment step, we propose a 2-
step approach that iteratively combines the clustering and within
clusters alignment steps, more specifically

• Initial clustering: Because at the beginning the curves are misaligned,
the standard k-means or k-medoids algorithm does not lead to rea-
sonable results. Therefore, in the initial clustering step we apply the
dynamic time warping method (DTW) with the aim to obtain the
distance matrix Mdtw (Eq. (A.1) in Appendix A), and then to apply
the k-medoids clustering operating on Mdtw.

• kth step: The misaligned curves are aligned separately in each
cluster. In practice, one of the above mentioned three algorithms
rSMTW, PCS or rETW can be used. In this study, we used only the
curve alignment methods with restriction to the warping function
(Section 3.3). According to the choice of the curve alignment
method, the algorithm is denoted as 2DTW-rSMTW, 2DTW-PCS or
2DTW-rETW.

• +k( 1)th step: Re-clustering of the aligned curves using the same
clustering approach as in the initial step. With the aim to evaluate
how well the curves are clustered and aligned, the following L-cri-
terion was considered in this study

=
=

L
N

X h t µ t1 (( )( ) ( )) dt
i

K

j X C
T j j i

1 :

2

j i (2)

=µ t
C

X h t( ) 1
| |

( )( )i
i j X C

j j
: j i

The criterion is a modified version of the criterion used in the
standard k-means algorithm [33] and represents a cumulative
average of the squared differences between the aligned curves

…X h X h, , N N1 1 and clusters …C C, , K1 representatives …µ µ, , K1 , de-
fined as the cluster means. C| |i is the cardinality of the cluster Ci.

These two steps, clustering and alignment, are iteratively repeated
until one of the following stopping criteria is met

• the number of iterations exceeds a given threshold; in this study set
to 100,

• the L-criterion (2) is lower than a given small constant,
• clusters in the kth, k( 1)th and k( 2)th steps do not change.

The chosen stopping criteria mimic those used in the standard
clustering techniques [33,34]. Finally, the cluster membership and
aligned curves that belong to the iteration step with the smallest
L-criterion are considered as the final result. A graphical schema of the
proposed approach is depicted in Fig. 4.

An important property of the method is its convergence. We found it
difficult to prove theoretical convergence. However, in each iteration of
the 2-step algorithm, the curves within the clusters are closer and more
similar to each other and therefore the average L-criterion decreases
with iterations. In this sense, the convergence is guaranteed. In all ex-
periments of this study, we observed decreasing values of the L-cri-
terion with iterations.

The MATLAB code can be obtained upon request from the corre-
sponding author.

4. Results

4.1. Simulated data

To objectively compare the performance of the existing curve
alignment and clustering approaches, we generated 100 datasets that
mimic the character of the sleep probabilistic curves, but have a known
cluster structure. In each of 100 trials, five template sleep probabilistic

Fig. 3. When a dataset includes misaligned curves (plot
a), grey) that follow two different profiles (plot a), da-
shed lines), the alignment of all curves simultaneously
leads either (i) to unsatisfactory results, when the curves
are only slightly transformed in time; that is, the results
of the PCS (pairwise curve synchronisation) and rSMTW
(self-modelling time warping with restriction) methods
or (ii) to rapid distortions of several curve profiles; that
is, the results of SMTW and elastic time warping with
(rETW) and without restriction (ETW). The average of
the aligned curves for each of the profiles is colour-
coded.
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curves Y Y Y Y Y, , , ,1 2 3 4 5 were selected at random from a set of all subjects’
curves generated by the PSM. By considering these five template curves,
we generated a set of 90 curves by the following formula

= = …
= +

X t Y t h t i
h t c g t d

( ) ( ) ( ), 1, , 90,
( ) ( ) ,

i U i

i i i i

i

=
=

=

= +

g t
g t b

b

g t t e

( )
( ), if 1,

, if 0,

( ) ,

i

i i
g t g
g g i

i
t

( ) (0)
(1) (0)

1

i i
i i

2

where b Alt(0.5)i , (1, 0. 01 )i1
2 , (0, 4)i2 and c d,i i are nor-

malising constants that guarantee =h (0) 0i and =h (1) 1i and
U {1, 2, 3, 4, 5}i . For each of the first two template curves we gener-
ated 10 curves, for the templates Y3 and Y4 we generated 20 curves and
finally for Y5 we generated 30 curves. An example of the dataset and
original template curves is depicted in Fig. 5. To ensure the

reproducibility of our results, the generated data and analysis results
can be obtained upon request from the corresponding author.

Using the generated curves we validated and mutually compared
the performance of (i) the SMTW, rSMTW, PCS, ETW and rETW
methods which align the whole set of curves before the k-means clus-
tering step, (ii) the tPCS method which simultaneously clusters and
aligns the curves, (iii) the three versions of the 2-step approach; 2DTW-
rSMTW, 2DTW-PCS and 2DTW-rETW, (iv) the k-means clustering of the
misaligned curves which serves as a reference method. We used the
following criteria to evaluate the clustering and time alignment per-
formance

• the proportion of curves assigned into the true cluster (quality of
clustering) measured by the Rand index R [0, 1] [35], and

• the quality of alignment evaluated by the L-criterion (2) and the
average silhouette (AS) [36]. The silhouette represents the tightness
and separation of each cluster. It has values in the interval [ 1, 1]
and shows how well a curve lies within the cluster and which curves
lay in between clusters. The closer AS is to the value 1, the more
compact clusters are formed.

4.1.1. Summary of the results
Next, the summary of the main results is provided, and the details

can be found in Appendix C.
First, as expected, we observed that applying the curve alignment to

the whole dataset before clustering produces inferior results. However,
the simultaneous curve alignment and clustering represented by tPCS
also did not improve this inferior performance. Qualitatively, this was
reflected by non-significant differences in the Rand indices produced by
the k-means clustering of misaligned curves and the curve alignment
preceding the clustering step or tPCS. The quality of alignment was also
low.

In contrast, the ETW without restriction to the warping time that
preceded the clustering step, the 2DTW-rSMTW and the 2DTW-rETW
methods produced nearly true clustering and satisfactory alignment.
However the ETW method aligned curves with different profiles to one
target curve and therefore it shifted the curves too far in time.
Consequently, this may lead to an incorrect interpretation of the clus-
tered curves, as graphically demonstrated in Appendix C. The problem
with the interpretation of the aligned curves was not observed in the
case of 2DTW-rETW and 2DTW-rSMTW, favouring the proposed 2-step
approach.

We conclude that on non-trivial generated data that mimic the
character of the sleep probabilistic curves the iterative combination of
clustering and curve alignment either with rETW or rSMTW, that is

Fig. 4. Schema of the proposed 2-step approach.

Fig. 5. Example of the generated dataset (top, grey) that mimics the character of the sleep probabilistic curves. The original template curves (top, black) were
misaligned in time by using randomly generated time transformations (bottom).
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2DTW-rETW and 2DTW-rSMTW, outperformed

• approaches in which the curve alignment precedes the clustering
step,

• the tPCS approach for simultaneous curve alignment and clustering.

4.2. Sleep data

PSM models the sleep process by considering a set of 20 sleep mi-
crostates. Considering each of these microstates separately, the sleep
probabilistic curves of 146 subjects were aligned and clustered by the 2-
step approach with rSMTW or rETW algorithms. Due to the strong in-
dividuality that can be present in each subject's curve, choosing a
proper number of clusters is a challenging task. Kodinariya and

Makwana [37] present an overview of criteria for choosing an appro-
priate number of clusters k in multivariate vector data. Following this
work, in this study we used the

• L-criterion [37], where the L-criterion (2) values for the chosen
clustering method are plotted as a function of the number of clus-
ters. This dependence is visually inspected and searched for a rapid
drop that is followed by a visible plateau. This rapid drop point is
then selected for setting the number of clusters k,

• average silhouette [36], where the AS values are plotted as a function
of the number of clusters for a chosen clustering method. Recall that
the closer AS is to the value 1, the more compact clusters are
formed. The number of clusters k is then set to the point where a
rapid increment in the AS values that is followed by approximately
constant values is observed.

After the alignment and clustering of sleep curves, we investigated
whether differences in the sleep profiles between clusters are also
mirrored in differences in daily measures. That is, cluster membership
was used to split each daily measure into corresponding subgroups and
the non-parametric Kruskal–Wallis test was used to test the significance
of the formed subgroup differences.

Recall that during the training process of the PSM, a link of each
sleep microstate to one of the standard sleep stages Wake, S1, S2, SWS
and REM is estimated. In the next section, we sort our major results
following this link.

4.2.1. Microstates similar to SWS
The relationship between the structure of Microstate 16 and age or

the physiological factor FA2 (Table 2) was visible for both in time
misaligned and aligned curves and for an arbitrary number of clusters
varying between 2 and 20.

Elderly people were assigned into clusters with lower probability
values of SWS as represented by Microstate 16 (Fig. 6, cluster 7). For
these clusters higher values of the physiological factor FA2 that re-
flected higher values of the blood pressure were also typical. On the
other hand, clusters with clearly visible periods of high probabilities of
Microstate 16 were formed by younger people with significantly lower
values of the physiological factor FA2.

Using the subjects’ class membership obtained by 2DTW-PCS or
2DTW-rETW, the Kruskal–Wallis test detected significant differences in
the level of drowsiness (drows) in the morning. The subjects with a clear
periodic pattern of Microstate 16 and a decreased amplitude of the local

Table 2
List of daily measures in which significant differences between formed clusters
were detected.

k -means 2DTW-rSMTW 2DTW-PCS 2DTW-rETW

Microstate 16
(8 clusters)

FA2, age FA2, age,
wb_m,
ad_ts

FA2, age,
drows

FA2, age,
drows

Microstate 8
(9 clusters)

pul_e,
dia_m,
dia_e

pul_e,
dia_e,
FA1,FA2,
age, num_m
drive, mood,
aff, drows

pul_e,
dia_m,
age

pul_e,
pul_m

Microstate 14
(3 clusters)

s_com,
drive

s_com,
drive, drows

s_com,
drows, s_qua,
FA2, dia_e

s_com,
drows, s_qua,
age

Microstate 1
(2 clusters)

ad_sv, aff ad_sv, aff
errp, mood

ad_sv –

Microstate 6
(3 clusters)

FA1,
aff, drows

FA1,
aff,
mood

–
aff,
mood

–
–
sys_m

Microstate 13
(4 clusters)

FA3, age,
s_qua, drows

FA3, age,
s_qua, drows,
s_com, drive,
FA2, sys_e,
ad_sv, errp
fma_l, fma_r

FA3, age,
s_qua, drows

FA3, age,
s_qua, drows,
s_com, drive,
FA2, pul_e

Microstate 19
(2 clusters)

age age, drive age, aff,
FA2

age,
FA2, fma_r,
s_qua, s_com

Fig. 6. Microstate 16. Clustering of 146 sleep probabilistic curves into 8 clusters by using the 2-step approach with the rSMTW algorithm used in the alignment step
and the k-medoids in the clustering step (2DTW-rSMTW). The cluster representatives (black) were computed as an average of the aligned curves (grey) from the
corresponding cluster.
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maxima of the probability values reported a higher drowsiness in the
morning when compared with the subjects with low probability values
for the microstate. Moreover, using the 2DTW-rSMTW algorithm, a
significant difference in the morning well-being (wb_m) was detected
between clusters 4 and 5 (Fig. 6).

4.2.2. Microstates related to REM
By considering the k-means clustering of misaligned curves, we

observed that the increased probability of Microstate 8 (73% REM) is
associated with the increased value of the diastolic blood pressure, both
in the morning (dia_m) and in the evening (dia_e), and the higher pulse
rate in the evening (pul_e). This observation is consistent with Rosipal,
Lewandowski and Dorffner [4] who observed positive correlations be-
tween the time spent in the REM stage and physiological measures.

After applying the 2-step algorithm, the observed difference in the
evening pulse rate between the formed clusters remained, but the sig-
nificance of the difference in the morning or evening diastolic blood
pressure varied with the choice of the alignment method (Table 2).
Using the 2DTW-rSMTW approach, we detected a significant difference
in the values of the physiological factor FA2 (which represents the
systolic and diastolic blood pressure both in the morning and in the
evening) between clusters 2, 8, and 9 (Fig. 7). For subjects assigned into

cluster 2, higher values of FA2 together with an increased probability of
Microstate 8 are typical in comparison to the subjects from cluster 8 or
9.

Using 2DTW-rSMTW, significant differences in the level of drive,
mood, affectivity (aff) and drowsiness (drows) were also observed.
Subjects showing a clearly visible oscillatory pattern of high and low
probability values of Microstate 8 (cluster 4 in Figure 7) achieved lower
values of drive, mood, affectivity, drowsiness or the factor of subjectively
scored sleep and awakening quality FA1 in the morning, indicating
their better subjective feeling in contrast to the subjects with low
probability values of the microstate (clusters 8, 9 in Fig. 7).

Considering the second REM-related Microstate 14 (72% REM), a
strong relationship with the subjective assessment of the somatic
complaints (s_com) and the level of drive or drowsiness in the morning
was visible for both aligned and misaligned curves (Fig. 8).

The clusters formed by the 2DTW-rETW method also significantly
differ in the subjectively scored sleep quality (s_qua). This effect was not
observed using the k-means clustering of the misaligned curves.
Similarly to Microstate 8, the increased probability for Microstate 14 is
related to improved sleep quality and subjective feelings in the
morning. Moreover, the subjects assigned into the cluster with higher
probability values of Microstate 14 showed significantly fewer somatic

Fig. 7. Microstate 8. Clustering of 146 sleep probabilistic curves into 9 clusters using the 2DTW-rSMTW method. The cluster representatives (black) were computed
as an average of the aligned curves (grey) from the corresponding cluster.

Fig. 8. Microstate 14. Clustering of 146 sleep probabilistic curves into three clusters using the 2DTW-rSMTW method. The cluster representatives (black) were
computed as an average of the aligned curves (grey) from the corresponding cluster.
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complaints (s_com) than the subjects with lower probability values, see
for example clusters 1 and 2 in Fig. 8.

4.2.3. Microstates similar to S2
Using the Kruskal–Wallis test, clusters of the sleep probabilistic

curves of Microstate 1 (85% S2) significantly differed in the attention
variability scored by the difference between the extreme scores of the
alphabetical cross-out test [27] (ad_sv) when misaligned curves were
considered. After applying the 2DTW-rSMTW algorithm, this difference
remained significant, but in addition, a significant difference in the
percentage of errors of the test (errp) between formed clusters was
detected. A higher variability in attention and an increased percentage
of errors were related to an increased probability for Microstate 1.

Clusters formed by the k-means algorithm significantly differed in
the level of affectivity (aff) in the morning. On other hand, clusters
formed by 2DTW-rSMTW significantly differed not only in the level of
affectivity but also of mood. We observed that an increased probability
for Microstate 1 results into an impairment of mood and affectivity in the
morning.

4.2.4. Microstates related to Wake
Following the results presented in Table 2 we hypothesised that the

structure of Microstate 6 (85% Wake) influences the subjects’ subjective
feelings in the morning. Subjects with approximately one hour of wa-
kefulness before the final awakening (cluster 3 in Fig. 9) scored higher
values of mood or affectivity (aff) and they felt drowsier in contrast to
the subjects from cluster 2 in Fig. 9. A similar phenomenon was also
observed for the factor of subjectively scored sleep quality (FA1).
Considering the 2-step approach, new results were not observed in
comparison to the misaligned case. By applying 2DTW-rETW, the ex-
isting relationship with FA1 or drowsiness diminished after the align-
ment (Table 2).

The relationship between the increased probability values of
Microstate 13, the sleep microstate representing the boundary between
wakefulness and sleep (45% Wake, 44% S1), and the worst subjectively
scored sleep quality (s_qua) or increased drowsiness in the morning was
strong and it was visible for the misaligned curves as well as for the
curves aligned in time. Moreover, the subjects above 60 years of age
had higher probability values for Microstate 13 in contrast to the
younger people less than 40 years of age. On other hand, the better
performance in the cognitive tests represented by the neurophysiolo-
gical factor (FA3) was typical for clusters with lower probability values
of Microstate 13. After applying the 2DTW-rSMTW algorithm, a similar
relationship was also observed by considering the individual cognitive
tests (fma_l, fma_r, ad_sv, errp).

2DTW-rSMTW and 2DTW-rETW formed clusters that significantly
differed in the level of drive in the morning, as well as in the physio-
logical factor FA2 and evening pulse rate (pul_e) (Table 2). Moreover,
the Kruskal–Wallis test detected significant differences for several
cognitive tests (fma_l, fma_r, ad_sv, errp) (Table 2) between clusters
formed by the 2DTW-rSMTW algorithm. Subjects with the periods of
increased probability of Microstate 13 reached lower scores in the tests
when compared to the subjects with increased probability of this

microstate towards the end of the night.
Microstate 19 is also linked to wakefulness (88% Wake). Considering

the misaligned curves, the clusters formed by the k-means algorithm
significantly differ only in age (Table 2). As expected, an increased
probability for this microstate was typical for elderly people above 60
years. After the alignment and clustering produced by the 2-step ap-
proach, the formed clusters also differ in daily measures that represent
subjective feelings in the morning, s_qua, s_com and drive. Similarly to
Microstates 13 or 6, subjects from the cluster of a higher probability of
wakefulness scored their subjective sleep quality and somatic com-
plaints worse than the subjects from clusters associated with low
probability values of Microstate 19.

5. Conclusions and discussion

In this study we aimed to identify specific continuous sleep profiles
that are significantly associated with daily life behaviour. In contrast to
one-dimensional sleep variables, we represent the sleep process through
a set of sleep probabilistic curves obtained from the previously pro-
posed probabilistic sleep model [12]. The curves were assigned into
subgroups (clusters) according to the similarity in their overall profiles
and the subjects’ membership to each cluster was obtained. Using the
obtained membership values, the significance of differences in daily life
measures between formed clusters was tested by the Kruskal–Wallis
test.

5.1. Clustering and alignment

However, when the studied curves are misaligned in time, standard
clustering techniques without alignment are not able to properly detect
curves with similar shape and therefore misalignment can lead to in-
correct clustering.

We experimentally observed that approaches where the time
alignment precedes the clustering step led either to the rapid distortion
of the curve shapes that caused their misinterpretation or to poor
alignment. This was already pointed out by Tang and Müller [14] and
demonstrated in this article on generated data that mimic the character
of sleep probabilistic curves. Moreover, existing methods for simulta-
neous curve alignment and clustering were either not appropriate for
the analysis of sleep curves or they led to unsatisfactory results.

To overcome these problems, we proposed and validated the novel
2-step iterative approach for clustering and time alignment of curves
with different profiles. Within this 2-step approach, we proposed to use
the DTW based distance matrix for the initial cluster identification and
for the k-medoids clustering in each iterative step. We observed that it
led to better results in comparison to k-means. In the second step of the
proposed approach, the curves of every cluster are separately aligned
by the selected alignment method. This provides the flexibility of
choosing a preferred alignment method that can be driven by experi-
ence, properties of studied curves, etc. The clustering and registration
steps are repeated until stopping criteria are met.

We also modified the SMTW method. To guarantee that the warping
function of SMTW is strictly increasing, we applied a penalty term to

Fig. 9. Microstate 6. Clustering of 146 sleep probabilistic curves into three clusters by the k-means algorithm applied to misaligned curves. The cluster re-
presentatives (black) were computed as an average of the aligned curves (grey) from the corresponding cluster.
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the slope of the warping function. This penalty avoids the situation in
which the first derivate of the warping functions is close to zero. We
also applied penalisation to the distance between the warping and real
time, which eliminates the strong discrepancy between these two times.
This step was motivated by the original PCS method where a similar
penalty is incorporated.

We validated the approach on 100 generated datasets that closely
mimic the character of the sleep probabilistic curves. In terms of the
Rand index (quality of clustering), L-criterion and average silhouette
(quality of alignment and clustering), the proposed 2-step iterative
combination of clustering and alignment outperformed the tPCS algo-
rithm, as well as the methods where the time alignment is applied to the
whole set of curves and precedes the k-means clustering.

Three different time alignment procedures were used and compared
within the 2-step clustering and alignment approach. On the same
generated dataset, we observed that the 2DTW-PCS version sometimes
led to inferior results in comparison to 2DTW-rSMTW and 2DTW-rETW.

5.2. Sleep profiles

Following the experimental findings on the generated data set, we
applied the 2-step iterative approach to a set of the probabilistic curves
representing the sleep process. In the first step an optimal number of
clusters k for each sleep microstate should be chosen. The choice was
based on the elbow diagram with the L-criterion (2) and the average
sillhouette. However due to the strong individuality that can be present
in each subject's curve, choosing a proper number of clusters was a
challenging task in some microstates. In this case a natural question
arises: how does the choice of k affects the results?

When k is small ( =K 2, 3), the sleep probabilistic curves for a given
sleep microstate are assigned into clusters mainly according to their
differences in amplitude (curves with low probability values and high
probability values). A significant difference in a selected daily measure,
denoted here as D, between these clusters means that values of D are
associated with the presence/absence of the sleep microstate.

Increasing k leads to clusters that differ not only in amplitude, but
also in the other aspects of their profile, for example, the number of
periods of higher probability for the REM sleep. This means that there
are still at least two clusters (with low and high amplitude) for which D
significantly differs, but new significant differences may occur between
clusters.

However, when k is high, the significant differences in D between
clusters may occur only due to the presence of small clusters or clusters
with outlier profiles, but they miss the physiological interpretation.

In summary, the relationships between the structure of a sleep mi-
crostate and selected daily measures, which were observed for a smaller
number of clusters, remain significant, but new significant differences
may occur between clusters when the number of clusters increases.
However, it is appropriate to set an upper bound to k, for example
based on the character of the data, and to check the physiological in-
terpretation of the results. In the case of the 146 sleep probabilistic
curves, we therefore restrict k to be at most 20.

Once the number of clusters was fixed, the 2-step approach was
applied.

The relationship between the decreased probability for wakefulness
and better subjectively scored sleep quality was strong and it was al-
ready clearly visible when considering clusters of the original, in time
misaligned, sleep curves. This result is consistent with [38,39,7].
Moreover, similar to [40] we observed the age-dependent changes in
the sleep patterns, more specifically, the clusters with an increased
probability for wakefulness and a decreased probability of SWS were
formed by elderly subjects above 60 years of age.

The same relationships were observed for sleep structure de-
termined by the 2-step approach. However, and importantly, after ap-
plying the 2-step approach, new correlations between the sleep struc-
ture and daily measures were found.

First, we observed, that the higher probability values of Microstate
16 (sleep microstate linked to SWS) are reflected in the increased
drowsiness in the morning. From an initial perspective, this may appear
to be an opposite result to our expectation and also to [41,42]. How-
ever, it is important to note that Microstate 16 is only one of several
microstates linked to SWS and does not represent the whole SWS pro-
cess as defined by the R&K rules. Investigating the power spectral
density of this microstate, we observed that the microstate can be
characterised by a higher level of delta activity when compared to other
microstates. We can therefore hypothesise that entering this microstate
with a higher probability during the night can cause sleep inertia in the
morning, which is reflected by a higher level of reported drowsiness in
the morning.

The clustering in time misaligned sleep probabilistic curves of
Microstates 8 and 14, both linked to REM, resulted only in a visible
relationship with the subjective feelings in the morning for Microstate
14. After applying the 2-step approach, we observed that the increased
probability of Microstate 8 is related to a better subjectively scored
level of mood, drive, drowsiness or affectivity in the morning. This is
consistent with the negative correlation between the time spent in the
REM stage and the total scores of the SSA questionnaire (lower values of
SSA indicate better sleep) observed by Rosipal, Lewandowski and
Dorffner [4] or Goelema et al. [7] and the relationship between higher
probability values of Microstate 14 (72% REM) and better subjectively
scored sleep quality (s_qua) or fewer somatic complaints (s_com).

The relationship between increased wakefulness during the night
and worse subjective feelings in the morning is well known [38,39,4].
For Microstate 13, both the k-means clustering of misaligned sleep
curves as well as the 2-step approach mirrored this expected relation-
ship. However, for Microstate 19 this expected relationship was ob-
served only when the curves were aligned and clustered by 2DTW-
rETW.

In Rošťáková and Rosipal [43] we observed that the curve align-
ment produced by ETW can be counter-productive when predicting
daily measures outcomes using the structure of the Wake stage. Similar
results were observed for Microstate 6 that represented the full wake-
fulness during the night. Significant differences in FA1 or the level of
affectivity between clusters of misaligned curves diminished after the
alignment. This indicates that the exact timing of the periods of in-
creased probability of Microstate 6 during the night is the important
factor when exploring existing relationships with the considered daily
measures.

Finally, we conclude that the sleep probabilistic curves create a
promising representation of the sleep process and its structure. In
contrast to the one-dimensional sleep characteristics extracted either
from the Rechtschaffen and Kales [2] or AASM [3] based sleep hyp-
nogram, the sleep curves represent the temporal dynamics of sleep
changes over the whole night. The advanced techniques of mathema-
tical statistics – functional data analysis – can be applied to sleep curves
when the goal of detecting relationships between sleep structure and
daily life measures is in the focus.

The proposed 2-step approach has proven to be a useful tool in the
analysis of sleep probabilistic curves. Recently, we also applied the
method to analyse the sleep structure of patients after ischemic stroke.
Although preliminary, the results confirm the validity of the approach
[44]. Moreover, the observed good performance of the method in-
dicates that it can be successfully used in a wider range of functional
data clustering tasks.
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Appendix A. Dynamic time warping as a clustering step

Dynamic time warping (DTW) is a method that was a priori developed and used for aligning curves observed, in general, at different sets of time
points [45]. Let us suppose that two curves X X,1 2 defined on the time interval =T [0, 1] are observed at a finite number of time-points

= … = < < < =
= … = < < < =

x X t X t t t t
x X s X s s s s

{ ( ), , ( ), 0 1},
{ ( ), , ( ), 0 1}

n n

n n

1 1 1 1 1 2

2 2 1 2 1 2

1 1

2 2

It is not required that the sets of time-points =t{ }i i
n

1
1 and =s{ }i i

n
1

2 are equal.
The main goal of the DTW method is to find the best match between curves X1 and X2 by constructing the warping path

= … … = …w i j i n j n l W{( , ), {1, , }, {1, , }, 1, , }l l l l L1 2

which minimises the cost function

=Q X X w X t X t( , , ) ( ( ) ( ))
i j w

i j1 2
( , )

1 2
2

l l
l l

where WL is the length of the warping path w. This problem can be solved by using dynamic programming [15].
There are a few natural constraints for the warping path w of DTW

• …i i j j l Wand for all {1, , }l l l l L1 1 (monotonicity),
• =i 11 , =j 11 , =i nW 1L , =j nW 2L (common starting and end point),
• i i 1l l 1 , j j 1l l 1 (continuity).

Finally, there is an optional argument >r 0 in the DTW method, which controls the distance between the real time and the warping path

= …i j r l W| | , 1, , .l l L

An interesting by-product of the DTW method is a distance measure between curves X X,1 2

= = ( )X X Q X X w X t X tdtw( , ) min ( , , ) min ( ) ( ) ,w w
i j w

i j1 2 1 2
( , )

1 2
2

l l
l l

where w represents a warping path. In the case of misaligned curves there is an evident advantage of such a similarity measure which represents a
discrete version of the criterion (1).

In our study, we use dtw for constructing a distance matrix ×M N N
dtw for a set of curves …X X, , N1

= = …M X X{dtw( , )}i j i j Ndtw , 1, , (A.1)

which can be used in the hierarchical or k-medoids functional data clustering algorithms [30].

Appendix B. Existing curve alignment methods

Self-modelling time warping The SMTW method [18] assumes that a set of curves = …X T i N: , 1, ,i follows the model

= + = …X t µ h t t i N( ) ( ( )) ( ), 1, , .i i i i
1

In other words, each Xi is an i-multiple of a common mean function µ (target curve) transformed in time, i represents the error term. The warping
functions = …h i 1 N, , ,i are defined as an argument of the minimum of the formula

… =
=

S h h X h t µ t h t( , , ) ( ( ( )) ( )) ( )dt.N
i

N

T i i i iSMTW 1
1

2

(B.1)

However, the method itself does not guarantee that the estimated = …h i 1 N, , ,i are strictly increasing functions, only nondecreasing. Constant
segments in the warping function implicate that the first derivative of h is zero within these intervals. To avoid this situation, we add a penalty term
to the slope of the warping function h. Now the criterion (B.1) changes to

… = … +
=

S h h S h h
h t

( , , ) ( , , ) 1
( )

1 dtN N
i

N

T i
rSMTW 1 SMTW 1 1

1

2

(B.2)

where 1 is the penalty weight. The penalty helps to avoid alignment of in time too distant segments and therefore restricts close to ideal syn-
chronisation of possibly dissimilar data. This version of SMTW was denoted as rSMTW in the main text.

With the aim to find an optimal penalty weight, we varied 1 between 0 and 0.53 and for each case the mean squared error MSE of aligned curves

3 > 0.51 led to poor or no alignment.
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was computed. As expected, the lowest MSE was obtained for = 01 . The optimal 1
4 was then selected as the value after which the MSE was

approximately constant or only slightly increasing.
Pairwise curve synchronisation The PCS method [16] solves the curve misalignment problem by aligning all possible pairs of curves X X i j, ,i j

separately

= +S X X h X h t X t h t t
h S X X h

( , , ) ( ( ( )) ( )) dt ( ( ) ) dt,
argmin ( , , ).

i j T i j T

h i j

PCS
2

2
2

ij PCS

Then, for each curve = …X i N, 1, ,i a global warping function hi is estimated

=
=

h t
N

h t( ) 1 ( ) ,i
j

N

1
ji

1

(B.3)

where 1 denotes the inverse function. The exact methodology for finding an appropriate value of the penalty parameter 2 can be found in [16,46].
Elastic time warping The main idea of the ETW method [19] is the alignment of the square root slope functions (SRSFs) …q q, ,X XN1

= = …q t X t X t t T i N( ) sign( ( )) | ( )| , , 1, , .X i ii

to a target function called the Karcher mean qµ [19], instead of alignment of the original curves. The warping functions …h h, , N1 are found by
minimising the criterion

= = …S h q t q h t h t i N( ) ( ( ) ( )( ) ( ) ) dt, 1, , .i T µ X i iETW
2

i (B.4)

In contrast to the other algorithms, criterion (B.4) is symmetric and invariant to a random warping [17] which makes ETW one of the most powerful
methods for curve alignment. Alternatively, since there are no restrictions to the distance between the real time and the warping function, ETW may
produce close to ideal alignment of possibly dissimilar curves. Fortunately, it is possible to add a penalty to the cost function (B.4), for example in the
form

= + = …S h S h h t i N( ) ( ) (1 ( ) ) , 1, , .i i T irETW ETW 3
2

(B.5)

The optimal value for the penalty parameter 3 was selected in a similar way as in the rSMTW algorithm. Other types of penalties can be found in
[46,Chapter 8].

Appendix C. Simulated data results

On generated curves with known cluster memberships, defined in Section 4.1, we validated and mutually compared the following methods:

• the k-means clustering with the functional version of the Euclidean distance (the L2 norm of curves)

=d X Y X t Y t( , ) ( ( ) ( )) dt
T

2

applied to misaligned curves. This method serves as a reference allowing us to compare the obtained results with the clustering that operates on
in-time misaligned curves.

• the SMTW, rSMTW, PCS, ETW and rETW algorithms applied to the whole dataset and followed by the k-means clustering, more specifically:
– The PCS method with the automatic selection of the restriction parameter 2 as implemented in the PACE package [46].
– The SMTW method implemented in the MATLAB routine and available on Gervini's webpage [32]. We also modified this SMTW version by

adding a penalty term (B.2) to the original MATLAB routine (rSMTW).
– The restricted rETW and non-restricted ETW method was taken from the R package fdasrvf [47], version 1.7.0.5

By using the procedure described in Appendix B, the parameter 1 was set to 0.1 for rSMTW and 3 varied in the interval [0.04, 0.08] for the rETW
method.

• The tPCS algorithm, where each curve was pairwise aligned only with the most similar curves (10% of the whole dataset6).
• The 2-step approach with the rSMTW, PCS and rETW algorithms used in the registration step; denoted as 2DTW-rSMTW, 2DTW-PCS and 2DTW-

rETW, respectively.

As mentioned in Section 4.1, the quality of clustering was compared with the true clustering by using the Rand index [35], while the quality of
alignment among different methods was evaluated by the average silhouette [36] and the L-criterion (2). Significant differences in the performance
of methods were measured by the Wilcoxon rank-sum test applied to the Rand indices with the Bonferroni's correction ( = 0.00090.05

55 ).

C.1 Time alignment of the whole dataset followed by the k-means clustering

Due to different profiles of the template curves (Fig. C.10a), the alignment of the whole dataset did not yield satisfactory results. Specifically,

4 We would like to highlight that there is no direct relationship between the parameter 1 and the warping window r which is mentioned in Appendix A.
5 Higher versions of the package do not allow restrictions to the distance between the real time and the warping function.
6 We observed that the higher proportion (>10%) of the most similar curves led to inferior results.
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• the PCS method aligns each pair of curves separately and then for each curve the global warping function is computed. However, when applied to
generated data that mimic the character of the sleep curves, the obtained global warping functions were approximately equal to the real time and
therefore the method produced visually poor alignment (Fig. C.10e). The Rand index values (R̄ 0.7, Table C.3) were not significantly different
from the values produced by the k-means clustering of misaligned curves (p-value= 0.88). The quality of alignment was low (Table C.4).

• by considering the original SMTW algorithm, unexpected flat segments occurred in several curves (Fig. C.10d). These flat segments are caused by
improper penalisation of nondecreasing warping functions in SMTW and due to the alignment of the curves with different profiles to one target.
After applying the above proposed modified version of the SMTW algorithm (rSMTW), the flat segments diminished, but at the cost of poorer
alignment of the curves (Fig. C.10g). This is also reflected by the significantly decreased average Rand index (p-value <10 5), decreased AS and
the increased L-criterion average in comparison to the unconstrained SMTW method (Tables C.3 and C.4).

• the ETW method visually aligns the curves well (Fig. C.10c), which was confirmed also by the average silhouette close to 1 and the L-criterion

Fig. C.10. An example of the generated dataset (grey) that mimics the character of the sleep probabilistic curves. First, the misaligned curves were assigned into
clusters by the k-means algorithm. Then before the k-means clustering the whole dataset was aligned by the (i) pairwise curves synchronisation algorithm (PCS), (ii)
self-modelling time warping method (SMTW) and its suggested penalised version (rSMTW) and (iii) elastic time warping with (rETW) and without (ETW) constraints
to the distance between the real time and warping function. Finally, the truncated version of the PCS algorithm (tPCS) and the 2-step approach with rETW (2DTW-
rETW) were applied. The cluster representatives (average curves) are colour-coded. (For interpretation of the references to colours in this figure legend, the reader is
referred to the web version of the article).

Table C.3
The average and median Rand index [35] (R) values for methods used to validate the alignment and clustering performance on 100
generated datasets that mimic the character of the sleep probabilistic curves.

Average R Median R >R R#{ : 0.75}

k -means 0.70 0.71 34
ETW + k -means 0.999 1.00 100
rETW + k -means 0.83 0.83 88
PCS + k -means 0.70 0.72 32
SMTW + k -means 0.84 0.85 84
rSMTW + k -means 0.78 0.79 70

tPCS 0.73 0.74 47

2DTW-rETW 0.997 1.00 100
2DTW-PCS 0.71 0.72 37
2DTW-rSMTW 0.80 0.81 85
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average close to 0 (Table C.4). Considering the quality of clustering, on average, only one or two curves were assigned into an incorrect cluster
(R̄ 1). However, the method tries to align curves with different profiles to one target and therefore sometimes important curve elements are
shifted too far in time or they are diminished during the alignment process, which may cause misinterpretation of the obtained results. An
example is demonstrated in Fig. C.11. The curves in the top plot represent cluster representatives of the original data aligned by the ETW
algorithm and the original template curves are depicted in the bottom plot. There are evident differences in the profiles of templates 2 and 3 and
the corresponding cluster representatives.
Considering the rETW method with = 0.05 (Fig. C.10f), the method achieved the highest average silhouette and the lowest L-criterion average
value among all methods with the restriction to the distance between the real time and warping functions. This result is also confirmed by visually
better alignment of curves produced by the rETW method than by the PCS or rSMTW methods. On the other hand, the typical sleep profiles are
difficult to detect and on average only 75% of curves were assigned into correct clusters. As expected, in comparison to the non-restricted version
of the algorithm, the L-criterion average increased and AS decreased.

We can conclude, that these results underline the need for the approach that combines clustering and curve alignment steps.

C.2 Combination of curve clustering and alignment

In this section, we compare the performance of the tPCS algorithm followed by the k-means clustering with the three versions of the 2-step
approach (2DTW-rSMTW, 2DTW-PCS, 2DTW-rETW). We observed that,

• From statistical point of view, the tPCS (Fig. C.10h) produced clustering of the same quality as the simple k-means clustering (Fig. C.10b) or PCS
method followed by the k-means clustering (p-values >0.007) but was outperformed by the 2DTW-rSMTW and 2DTW-rETW approaches (p-values
<10 12). The quality of clustering was measured by the Rand index. This observation was confirmed also when considering the quality of
clustering and alignment represented by the AS and L-criterion average (Table C.4).

• The 2DTW-rSMTW version of the 2-step algorithm outperformed or produced similar results in comparison to tPCS and the approaches when the
alignment preceded the clustering step. Significantly better results were obtained only by the ETW algorithm followed by the k-means clustering
and the 2DTW-rETW method. However, as we demonstrated above, the ETW approach without restrictions shifts the curves too far in time and
consequently the correct interpretation of the curves can be lost.

• The variant of the 2-step approach with the PCS algorithm (2DTW-PCS) produces similar results to the tPCS algorithm or PCS followed by the

Table C.4
The average silhouette (AS) and the L-criterion (Eq. (2)) values for methods used to validate the
alignment and clustering performance on generated data that mimic the character of the sleep
probabilistic curves. The values were averaged across all 100 trials.

Average silhouette L-criterion

k -means 0.525 0.098
ETW + k -means 0.996 143×10−1

rETW + k -means 0.752 0.022
PCS + k -means 0.556 0.089
SMTW + k -means 0.653 0.035
rSMTW + k -means 0.590 0.052

tPCS 0.566 0.082

2DTW-rETW 0.999 1.19×10−1

2DTW-PCS 0.581 0.079
2DTW-rSMTW 0.805 0.022

Fig. C.11. Comparison of the cluster representatives (the mean curve of a cluster) of generated data (top row) and the original template curves (bottom row). Before
clustering, data were aligned by the elastic time warping algorithm without constraints.
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k-means clustering. The obtained results are significantly inferior in comparison to 2DTW-rSMTW and 2DTW-rETW (Tables C.3 and C.4).
• the best results were obtained by the 2DTW-rETW algorithm (Fig. C.10i), either when measuring its performance by the Rand index, L-criterion

or AS. In contrast to the ETW method preceding the k-means clustering, in the case of 2DTW-rETW the problem with the interpretation of the
aligned curves is not present (Fig. C.12).
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