
where p(i) or     indicates probability of micro-state 
i in a given segment. Conditional probabilities         
a         were modeled by normal distribution N 
with (unknown) parameters     a     . All unknown 
parameters were estimated in the training 
process by the EM-algorithm. Derived microstates 
do not necessarily have a well-defined clinical or 
physiological interpretation. Hence for each 
microstate probabilities of traditional sleep stages 
(wake, S1, S2, SWS – slow wave sleep, REM) 
were estimated (Figure 1).  
Plotting posterior probabilities for a given 
microstate against time produces a posterior 
curve. 
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| Introduction  
 

Sleep deprivation, whether from disorder or lifestyle, poses a significant risk in daytime performance. Ischemic stroke is a serious 
disease affecting parts of brain and resulting in possible changes in sleep structure. In the study, functional cluster analysis was used 
in order to identify potential sources of disturbed sleep in stroke patients. 

| Data and methods  
 

In total, 33 night records of patients after ischemic stroke were used (average age 68 years). A control sample of healthy sleepers was 
taken from the SIESTA database [2] . 

Instead of the traditional Rechtschaffen and Kales scoring system an alternative method for sleep modelling was used. Probabilistic 
sleep model (PSM) describes sleep via posterior probabilities of sleep stages called sleep microstates [1]. Posterior probabilities for a 
given microstate of a selected subject are considered as curves. 

Cluster analysis  of posterior curves was chosen as a tool for detecting differences in sleep architecture influenced by ischemic stroke. 
Posterior curves were smoothed by smoothing covariance surface within functional principal component analysis [3]. After that,          
k-means algorithm was applied on smoothed posterior curves aligned to sleep latency. Each cluster was represented by an average 
posterior curve.  

| Differences in sleep structure among healthy sleepers and patients after stroke  
 

Sleep structure varies in age groups, therefore posterior curves of patients after stroke were compared only with healthy sleepers 
older than 60 years. Figure 5 shows clustering results within the first 16 microstates. Average posterior curves of clusters are 
represented by colored lines. Black curves are related to stroke patients (solid) and healthy sleepers (dashed). 
 

| Probabilistic sleep model 
 

PSM characterizes sleep as continuous process in terms of posterior probabilities of a finite number of sleep stages called sleep 
microstates. We consider an updated version of the PSM trained on EEG signal obtained from 3 pairs of electrodes and a single  
channel EMG signal. Both signals were partitioned into non-overlapping segments of length 3 s. An autoregressive model (AR) of 
order 5 was then fitted with the Burg method applied for every segment, in the case of EMG signal the AR model of order 2 was used. 
Estimated coefficients were concatenated into a feature vector a. After that, the Gaussian mixture model was estimated in 3 × 5 + 2 
dimensional space of the AR coefficients:  
 
 
 

u microstates 5 (76% S2) and 14 (80% SWS) 
v  differences between black curves,  
v  evident similarity between black 

curves and average posterior curves 
of clusters, 

v  in microstate 14 during the second 
half of night black and coloured 
curves overlap,  

v  the red cluster in these microstates 
included more healthy subjects than 
stroke patients, in the blue cluster 
dominated patients after stroke. 

u microstate 12 (96% S2)  
v  the red cluster included only healthy 

sleepers, in the case of stroke patient 
very low probability values were 
noticed, therefore the microstate  can 
be associated and typical for healthy 
sleepers.  

| Sleep structure and age 
 

First, we aimed to find a connection between sleep structure and age. In this case, only healthy sleepers were taken into account. By 
testing differences among clusters we found out, that within microstates related to SWS or S2 stage a cluster with a higher posterior 
values included mostly younger, less than 40 years old subjects (Figure 2). By contrast, higher probability values of microstates 
related to wake or S1 stages were associated with clusters formed by elderly healthy subjects (> 60 years old) and were observed  
during the whole night (Figure 3).  

| Sleep structure and subjective    
  quality of sleep 
 
Following the results of the functional cluster analysis we found 
relations between self-rating  sleep quality scores and 
microstate posterior curves related to wake (Figure 4). Scores 
over 10 indicate poor sleep and belong to the cluster with high 
probability values.  
 
Similar relations with microstate 14 related to REM were found 
for scores of Visual Analogue Scale Test for Drive and 
Drowsiness of healthy sleepers. Subjects in cluster with higher 
probability values of the microstate 14 were associated with low 
values of their drive and drowsiness.  
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p(a) = p(i)p(a | i) = π i
i=1
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∑
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Figure 5: Cluster analysis of posterior curves in patients after stroke and healthy sleepers 
for the first 16 microstates. Average posterior curves of clusters are represented by 
colored lines. Black curves are related to stroke patients (solid) and healthy sleepers 
(dashed). 
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Figure 1: Posterior probabilities (green color) transformed into classical sleep stages 
and compared with the Rechtschaffen & Kales scores (magenta color).  

Figure 2 : Microstate 17 (97% S2). Cluster with higher 
posterior values (red line) was formed by young subjects      
(< 40 years old, red dots).  
 

Figure 3: Microstate 13 (44% wake, 40% S1). Higher 
probability values are associated with the cluster including 
people over 60 years (blue dots).  
 

Figure 4: Microstate 19 (87% wake). Higher probability 
values belong to cluster with self rating sleep quality scores 
over 10. In this case, values about 8 indicates good sleep 
ratings, high scores represents bad sleep. It seems like higher 
values of sleep quality scores reflect higher probability for 
microstate similar to wake stage. 
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