From polysomnography to sleep parameters indexing sleep quality and sleep related physiological and psychometric factors

Roman Rosipal, Achim Lewandowski, Georg Dorffner

Section of Medical Cybernetics and Artificial Intelligence Center for Medical Statistics, Informatics and Intelligent Systems

Medical University Vienna
Vienna, Austria

MEDICAL
UNIVERSITY
OF VIENNA

Objectives of the Study

- How to define and objectively measure sleep quality?

Objectives of the Study

- How to define and objectively measure sleep quality?
- How to balance objective and subjective measures of the sleep quality? Questionnaires versus PSG, behavioral testing ...

Objectives of the Study

- How to define and objectively measure sleep quality?
- How to balance objective and subjective measures of the sleep quality? Questionnaires versus PSG, behavioral testing ...
- How the subjective perception of sleep relates to the objective measures of the day-time behavior or subject's physiological changes? For example, does poorly rated and perceived sleep necessarily mean impaired cognitive ability, increased sleepiness or reduced vigilance?
- Subjects (the Siesta project database): 148 healthy volunteers, 67 males and 81 females, age between 20 and 86 , spending two consecutive nights in the sleep lab

Dataset

- Subjects (the Siesta project database): 148 healthy volunteers, 67 males and 81 females, age between 20 and 86 , spending two consecutive nights in the sleep lab
- List of 22 tests and measured variables collected during the two consecutive days in the sleep lab:

Abbreviation	Explanation
age	Age of a subject
s_qua	Self-rating Questionnaire for Sleep Quality
a_qua	Self-rating Questionnaire for Awakening Quality
s_tot	Self-rating Questionnaire for Somatic Complaints
num_m	Numerical Memory Test (morning)
wb_e	Well-being Self Assessment Scale (evening)
wb_m	Well-being Self Assessment Scale (morning)
pul_m	Pulse Rate (morning)
pul_e	Pulse Rate (evening)
sys_m	Systolic Blood Pressure (morning)
sys_e	Systolic Blood Pressure (evening)
dia_m	Diastolic Blood Pressure (morning)
dia_e	Diastolic Blood Pressure (evening)
vas_drive	Visual Analogue Scale Test for Drive
vas_mood	Visual Analogue Scale Test for Mood
vas_aff	Visual Analogue Scale Test for Affectivity
vas_drows	Visual Analogue Scale Test for Drowsiness
ad_ts	Alphabetical Cross-out Test (total score)
ad_sv	Alphabetical Cross-out Test (variability)
ad_errp	Alphabetical Cross-out Test (percentage of errors)
fma_r	Fine Motor Activity Test (right hand)
fma_l	Fine Motor Activity Test (left hand)

- Factor analysis model: $\mathbf{x}=\Lambda \mathbf{f}+\epsilon$

Factor Analysis Towards Parsimonious Sleep Quality Indexing

- Factor analysis model: $\mathbf{x}=\Lambda \mathbf{f}+\epsilon$
- Factor loadings (the first three factors):

Observed variables	Factor 1 subjective	Factor 2 physiological	Factor 3 psychometric
age	-0.061	+0.443	-0.601
s_qua	+0.240	+0.097	-0.005
a_qua	+0.538	+0.066	-0.087
s_com	+0.275	+0.199	-0.017
num_m	-0.006	-0.222	+0.437
wb_e	+0.439	-0.061	+0.111
wb_m	+0.705	-0.019	+0.123
pul_m	-0.086	-0.074	-0.111
pul_e	-0.187	-0.110	-0.037
sys_m	+0.070	+0.855	-0.207
sys_e	-0.034	+0.832	-0.232
dia_m	+0.128	+0.694	-0.147
dia_e	+0.027	+0.679	-0.095
vas_drive	+0.840	-0.001	+0.019
vas_mood	-0.751	+0.038	+0.013
vas_aff	-0.728	+0.024	+0.143
vas_drows	+0.810	-0.107	+0.076
ad_ts	-0.043	-0.178	+0.537
ad_sv	+0.093	-0.028	-0.018
ad_errp	+0.010	-0.021	-0.007
fma_r	-0.059	-0.156	+0.918
fma_l	-0.016	-0.083	+0.844
Explained variance	17%	17%	7%

Probabilistic Separator Model (type of a Gaussian Mixture Model)

Probabilistic Separator Model

Example: S2-related Sub-states Plot

R\&K Based Plot

Statistical Evaluation

- R\&K hypnogram $\Rightarrow 109$ parameters (tib, eff, tst, sl, q1 - q4, ...)

Statistical Evaluation

- R\&K hypnogram $\Rightarrow 109$ parameters (tib, eff, tst, sl, q1-q4, ...)
- PSM curves $\Rightarrow 325$ parameters (R\&K like, auc, entropy, ...)
(1) R\&K like PSM sleep model
(2) Combined sub-state curves model

Statistical Evaluation

- R\&K hypnogram $\Rightarrow 109$ parameters (tib, eff, tst, sl, q1-q4, ...)
- PSM curves $\Rightarrow 325$ parameters (R\&K like, auc, entropy, ...)
(1) R\&K like PSM sleep model
(2) Combined sub-state curves model
- Spearman rank correlations between sleep parameters and three factor scores were computed

Factors vs. Individual Variables

- Correlations between sleep parameters for the second (physiological) and third (psychometric) factors were found to be higher or comparable with the correlations computed using the individual variables they consist of (two sample t-test)

Factors vs. Individual Variables

- Correlations between sleep parameters for the second (physiological) and third (psychometric) factors were found to be higher or comparable with the correlations computed using the individual variables they consist of (two sample t-test)
- This was not true for the first factor where s_qua was higher (s_qua - 7 questions self-rating sleep quality, Saletu et al. (1987))

Age Effect

- Strong age effect was found for the physiological and psychometric factors \Rightarrow restriction to age group 20-40 years where the effect is not significant

R\&K versus PSM - s_qua

s_qua (subjective sleep quality questionnaire)

- Comparable results between R\&K and PSM for general sleep parameters (e.g. eff, tst, ...), wake, S1 and REM $|\rho| \approx 0.3-0.36$

R\&K versus PSM - s_qua

s_qua (subjective sleep quality questionnaire)

- Comparable results between R\&K and PSM for general sleep parameters (e.g. eff, tst, ...), wake, S1 and REM $|\rho| \approx 0.3-0.36$
- In addition, PSM shows significant correlations for S2 and SWS (auc, entropy) $|\rho| \approx 0.24-0.27$

R\&K versus PSM - 2nd factor

physiological factor

- R\&K: significant correlations for two general sleep parameters fw_q4, fs and two SWS parameters tst, tst_q2 $|\rho| \approx 0.26-0.39$

R\&K versus PSM - 2nd factor

physiological factor

- R\&K: significant correlations for two general sleep parameters fw_q4, fs and two SWS parameters tst, tst_q2 $|\rho| \approx 0.26-0.39$
- PSM: significant (and in comparison to R\&K higher) correlations for general sleep parameters and also significant correlations for parameters representing all sleep stages and wake $|\rho| \approx 0.30-0.44$

psychometric factor

- R\&K: only sleep latency to REM and average duration of REM cycles are significant $|\rho| \approx 0.31,0.26$

R\&K versus PSM - 3rd factor

psychometric factor

- R\&K: only sleep latency to REM and average duration of REM cycles are significant $|\rho| \approx 0.31,0.26$
- PSM: significant for parameters representing all sleep stages but not wake
$|\rho| \approx 0.30-0.43$

Beyond R\&K

- Higher correlation values of auc and entropy sleep parameters were observed for combined sub-states models (e.g. $\rho=0.39$ vs. 0.42 ; for auc_q4 in wake; 2nd factor; 5.5 sub-states)

Beyond R\&K

- Higher correlation values of auc and entropy sleep parameters were observed for combined sub-states models (e.g. $\rho=0.39$ vs. 0.42 ; for auc_q4 in wake; 2nd factor; 5.5 sub-states)
- Number of sub-states varies with individual sleep stages but on average it is less than $1 / 4$ of all sub-states
- Higher correlation values of auc and entropy sleep parameters were observed for combined sub-states models (e.g. $\rho=0.39$ vs. 0.42 ; for auc_q4 in wake; 2nd factor; 5.5 sub-states)
- Number of sub-states varies with individual sleep stages but on average it is less than $1 / 4$ of all sub-states
- This finding indicates that changes in substructures of the standard R\&K sleep stages may better reflect important aspects of the sleep process related to subjective or objective evaluation of sleep
- PSG provides objective measures which significantly correlate with the collected subjective and objective measures of sleep quality
- PSG provides objective measures which significantly correlate with the collected subjective and objective measures of sleep quality
- The proposed probabilistic approach allows to model finer micro-structure of sleep which increases the level of the studied correlations
- PSG provides objective measures which significantly correlate with the collected subjective and objective measures of sleep quality
- The proposed probabilistic approach allows to model finer micro-structure of sleep which increases the level of the studied correlations
- The clinical validation of these results remains the subject of the further study

