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INTRODUCTION
The influence of sleep on humans daily life behavior is already well–known. In our long–term research we aim to identify specific temporal sleep profiles which reflect important physiological aspects of sleep. Instead of the classical
Rechschaffen and Kales sleep model we focus on the probabilistic sleep model (PSM), which characterizes the sleep process by probability values of 20 sleep states, which we call sleep microstates. By considering the probability values
of a given sleep microstate as a function of sleep time we obtain a curve. In this work we study functional data clustering methods for detecting groups of subjects with similar curve-profiles. When curves are not synchronized in time,
classical clustering techniques like k–means may assign some curves into incorrect clusters. The second major problem is associated with methods operating on cluster–typical night profiles. Profiles computed on misaligned data are
in general poor cluster representatives. Therefore, to overcome these problems of clustering sleep microstates curves we apply our recently developed 2–step iterative approach which iteratively combines the cluster analysis and curve
registration steps.

CURVE ALIGNMENT PROBLEM
Let X and Y represent curves defined over the time interval T . To register (in time align) curves X,Y means to find a strictly increasing
warping function h : T → R which minimizes a chosen similarity criterion, for example∫

T

(X(t)− (Y ◦ h)(t))2 dt

In this work we use the Self–Modelling Time Warping (SMTW, [1]) algorithm, which good performance has been proved in practice.
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Figure 1: Example of the two misaligned curves
with similar overall profile. Green lines be-
tween corresponding time points indicate that
the squared area between the curves is quite
large (equal to 0.04).
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Figure 2: Points on the curves from Fig. 1 con-
nected according to the overall curves dynamics
regardless to the real time. The Dynamic Time
Warping algorithm (see below block) was used
here to match the corresponding curve points.
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Figure 3: The curves from Fig. 1 synchronized
in time by the Self–Modelling Time Warping al-
gorithm. Similarity between the curves profiles
is more evident and the square area between the
curves decreased to 0.01.

2–STEP APPROACH
Let {X1, . . . , XN} be a set of misaligned probabilistic sleep curves defined over the time
interval T and represents the set which we would like to divide into K clusters. We apply
an iterative clustering approach consisting of the following steps:

1. Assign the curves into K clusters using the distance matrix

Mdtw = {dtw (Xi, Xj)}i,j=1,...,N

as an input for the k–medoids algorithm. The dtw measure defined by eq. (1) takes
into account possible curves time misalignment and therefore is more appropriate
than the point-to-point Euclidean distance.

2. Separately align curves in each cluster and denote the aligned curves as X?
1 , . . . , X

?
N .

For curves alignment we use the SMTW method, although an arbitrary registration
algorithm could be chosen and this can be done according to a given structure of
curves. To guarantee that the warping function h is strictly increasing and to avoid
alignment of distant time segments an additional restriction is considered within the
chosen registration method.

3. Compute the average similarity within the formed clusters C1, . . . , CK

L =
K∑
i=1

1

|Ci|
∑

j:X?
j ∈Ci

∫
T

(
X?

j (t)− µi(t)
)2
dt µi(t) =

1

|Ci|
∑

j:X?
j ∈Ci

X?
j (t) t ∈ T

4. If the number of iterations exceeds 100 or L < ε, where ε is a small given constant,
stop. Otherwise repeat the algorithm with the registered curves X?

1 , . . . , X
?
N .

DYNAMIC TIME WARPING
Dynamic Time Warping (DTW, [2]) is a
member of a wider area of registration
methods. For discrete observations of two
curves

X1 = (X1(t1), . . . , X1(tn1
))

X2 = (X2(s1), . . . , X2(sn2
))

the goal of DTW is to find the optimal
warping path

w =

{
(il, jl),

il ∈ {1, . . . , n1},
jl ∈ {1, . . . , n2},

l = 1, . . .W

}
which minimizes the sum of distances be-
tween matched points

QX1,X2
(w) =

∑
(il,jl)∈w

d (X1(til), X2(tjl))

where W is the length of the warping path
w and d is Euclidean distance.
Instead of curve alignment we use DTW as
a similarity measure of misaligned curves

dtw(X1, X2) = min
w
QX1,X2

(w) (1)

RESULTS
To compare our 2–step approach with standard k–means raw data clustering we consider two sleep datasets. The PSM was trained and applied to each dataset separately. As a
preprocessing step, probabilistic sleep curves of each sleep microstate were aligned considering the sleep latency and they were smoothed with ??? .

The first dataset consists of the PSG recordings of 146 healthy subjects each spending two consecutive nights in the sleep lab. This cohort represents a subset of healthy sleepers from the
SIESTA database [3]. Except of that, the SIESTA database contains results of a set of questionnaires about sleep and awakening quality, tests for assessment of memory and motor activity,
and the physiological blood pressure and pulse rate measures [4].
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Figure 4: Cluster analysis of a microstate similar to the Wake stage using the k–means algorithm. Clus-
ter representatives are depicted on the left. Because of only few subjects assigned into the blue cluster,
the difference in age between clusters is not evident, although significant, p–value = 0.02 (right).
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Figure 5: Cluster analysis of a microstate similar to the Wake stage using the 2–step approach. Clus-
ter representatives are depicted on the left. The difference in age between formed clusters is highly
significant, p–value < 0.001 (right).
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Figure 6: Cluster analysis of a microstate similar to the S2 stage (25%) and SWS (74%). Clusters were
formed by the k–means algorithm (left). The difference in numeric memory test between clusters is not
significant, p–value = 0.25 (right).
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Figure 7: Cluster analysis of a microstate similar to the S2 stage (25%) and SWS (74%) using the 2–step
approach (left). The red cluster representative follows the typical pattern for slow wave sleep. The
difference in numeric memory test between clusters is significant, p–value = 0.017 (right).

The second database includes 21 PSG recordings of patients after ischemic stroke together with results of a battery of tests for assessment of motor activity, working memory and attention.
Some results obtained by the 2–step approach are depicted in figures below. Considering only the k–means raw data clustering, these relationships remained hidden.
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Figure 8: Cluster analysis of a microstate similar to the Wake stage (45%) and S1 stage (51%). On the
left cluster representatives are plotted, on the right the structure of clusters is applied to the LANT A
test [5]. The ANOVA test rejects the null hypothesis that the LANT A results in both groups are equal,
p-value = 0.02.
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Figure 9: Cluster analysis of a microstate similar to the S2 stage (53%) and SWS (30%). On the left
cluster representatives are plotted, on the right the structure of clusters is applied to the results of the
TMENSTAT - the questionnaire about mood, mental energy and fatigue. The ANOVA test rejects the
null hypothesis that the values in the clusters are equal, p-value < 0.001.
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CONCLUSION
Curves time misalignment forms a difficult problem in the curves clustering process. The k–means clustering based on point–to–point distance usually detects clusters with only few subjects and one big, usually nonhomogeneous,
subset. Because of an improper clustering relationships between the cluster specific night profiles and daily test scores remain hidden. In contrast to the k–means clustering, the proposed 2–step clustering method shows an improvement
to reveal existing relationships between the structure of the sleep process and daily measures. Working with the database of healthy sleep subjects we were able to detect relationship between the majority of sleep microstates and age or
the level of day-time drive and drowsiness. Considering the database of patients after ischemic stroke, the observed connection between microstates representing the Wake or S2 sleep stages and the results of LANT seems promising.


