Continuous sleep profiles clustering with a novel 2-step functional

data approach
ZuZana RošŤÁková ${ }^{1}$, Roman Rosipal ${ }^{1}$, Georg Dorffner ${ }^{2}$
${ }^{1}$ Department of Theoretical Methods
Institute of Measurement Science,
Slovak Academy of Sciences, Bratislava, Slovakia

Center for Medical Statistics, Informatics and Intelligent Systems,
Medical University of Vienna,
Vienna, Austria
zuzana.rostakova@savba.s
georg.dorffner@meduniwien.ac.at

InTRODUCTION

 registration steps.

CURVE ALIGNMENT PROBLEM

Let X and Y represent curves defined over the time interval T. To register (in time align) curves X, Y means to find a strictly increasing warping function $h: T \rightarrow \mathbb{R}$ which minimizes a chosen similarity criterion, for example

$$
\int_{T}(X(t)-(Y \circ h)(t))^{2} d t
$$

2-STEP APPROACH

Let $\left\{X_{1}, \ldots, X_{N}\right\}$ be a set of misaligned probabilistic sleep curves defined over the time interval T and represents the set which we would like to divide into K clusters. We apply an iterative clustering approach consisting of the following steps.

1. Assign the curves into K clusters using the distance matrix

$M_{d t w}=\left\{d t w\left(X_{i}, X_{j}\right)\right\}_{i, j=1}, N$

as an input for the k-medoids algorithm. The $d t w$ measure defined by eq. (1) takes into account possible curves time misalignment and therefore is more appropriate than the point-to-point Euclidean distance.
2. Separately align curves in each cluster and denote the aligned curves as $X_{1}^{\star}, \ldots, X_{N}^{\star}$. curves alignment we use the SMTW method, although an arbitrary registration algorithm could be chosen and this can be done according to a given structure of arves. To guarantee that the warping function h is strictly increasing and to chosen registration method.
3. Compute the average similarity within the formed clusters C_{1},

$$
L=\sum_{i=1}^{K} \frac{1}{\left|C_{i}\right|} \sum_{j: X_{j}^{\star} \in C_{i}} \int_{T}\left(X_{j}^{\star}(t)-\mu_{i}(t)\right)^{2} d t \quad \mu_{i}(t)=\frac{1}{\left|C_{i}\right|} \sum_{j: X_{j}^{\star} \in C_{i}} X_{j}^{\star}(t) \quad t \in T
$$

Figure 2: Points on the curves from Fig. 1 connected according to the overall curves dynamics regardless to the real time. The Dynamic Time Warping algorithm (see below block) was used
here to match the corresponding curve points.

Figure 3: The curves from Fig. 1 synchronized in time by the Self-Modelling Time Warping algorithm. Similarity between the curves profiles curves decreased to 0.01.
4. If the number of iterations exceeds 100 or $L<\varepsilon$, where ε is a small given constant, stop. Otherwise repeat the algorithm with the registered curves $X_{1}^{\star}, \ldots, X_{N}^{\star}$.

Results

To compare our 2-step approach with standard k-means raw data clustering we consider two sleep datasets. The PSM was trained and applied to each dataset separately. As a preprocessing step, probabilistic sleep curves of each sleep microstate were aligned considering the sleep latency and they were smoothed with ???
The first dataset consists of the PSG recordings of 146 healthy subjects each spending two consecutive nights in the sleep lab. This cohort represents a subset of healthy sleepers from the SIESTA database [3]. Except of that, the SIESTA database contains results of a set of questionnaires about sleep and awakening quality, tests for assessment of memory and motor activity, and the physiological blood pressure and pulse rate measures [4].

Figure 4: Cluster analysis of a microstate similar to the Wake stage using the k-means algorithm. Cluster representatives are depicted on the left. Because of only few subjects assigned into the blue cluster, the difference in age between clusters is not evident, although significant, p-value $=0.02$ (right)

Figure 6: Cluster analysis of a microstate similar to the S2 stage (25%) and SWS (74%). Clusters were formed by the k-means algorithm (left). The difference in numeric memory test between clusters is not significant, p-value $=0.25$ (right).

Figure 5: Cluster analysis of a microstate similar to the Wake stage using the 2-step approach. Cluster representatives are depicted on the left. The difference in age between formed clusters is highly ter representatives are depicted on
significant, p-value <0.001 (right)

Figure 7: Cluster analysis of a microstate similar to the S2 stage (25\%) and SWS (74\%) using the 2-step approach (left). The red cluster representative follows the typical pattern for slow wave sleep. The difference in numeric memory test between clusters is significant, $p-$ value $=0.017$ (right).

The second database includes 21 PSG recordings of patients after ischemic stroke together with results of a battery of tests for assessment of motor activity, working memory and attention. Some results obtained by the 2-step approach are depicted in figures below. Considering only the k-means raw data clustering, these relationships remained hidden.

Figure 8: Cluster analysis of a microstate similar to the Wake stage (45%) and $S 1$ stage (51%). On the left cluster representatives are plotted, on the right the structure of clusters is applied to the LANT A
test [5]. The ANOVA test rejects the null hypothesis that the LANT A results in both groups are equal, p-value $=0.02$.

CONCLUSION

