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ABSTRACT: We used a proprietary constructed brain-
computer interface system with a head-mounted display
for motor neurorehabilitation training of a subject after
a stroke. This study analyzes quantitative EEG (qEEG)
changes during resting state periods before and after the
neurorehabilitation training. Eyes closed and eyes open
resting state EEG collected during 13 training sessions is
analyzed to determine qEEG changes indicating mental
state changes like increased mental fatigue, tiredness, or
sleepiness. We decomposed the EEG spectrum into oscil-
latory and fractal parts, allowing us to investigate changes
in the oscillatory component of qEEG separately. We
observed increased post-training oscillatory EEG ampli-
tudes in slow frequency bands (delta and theta) and de-
creased in faster alpha to beta bands. A shift to a slower
frequency of the dominant alpha frequency was also ob-
served in the post-training resting state EEG. Compared
with existing literature, these changes indicate increased
mental fatigue and sleepiness.

INTRODUCTION

A growing body of evidence suggests that integrated
technologies of brain-computer interfaces (BCI) and vir-
tual reality (VR) environments provide a flexible plat-
form for neurorehabilitation therapies, including signifi-
cant post-stroke motor recovery and cognitive-behavioral
therapy. If VR scenarios are realized through head-
mounted displays (HMDs), a compact BCI-HMD sys-
tem that is exceptionally flexible and rich for implement-
ing various scenarios and tasks can be constructed. As
some studies have shown, BCI-based neurorehabilitation
therapies are effective in improving the motor abilities of
stroke survivors [2, 3].
One of the challenges of BCI is its decreased performance
over time, making it unreliable for long-term use [4]. The
oscillations of psychological states can cause such incon-
sistencies. While performing BCI tasks, mental states
such as level of frustration, mental fatigue, and atten-
tion may shift, therefore influencing the outcomes of a
BCI session [5]. This is a concern because stroke sur-
vivors exhibit a higher prevalence of fatigue; it is often
severe and frequent even long after stroke [6]. There-
fore, it is important to consider mental states, especially

fatigue, for stroke patients while performing rehabilita-
tion procedures. Previous studies concentrated on subjec-
tive fatigue measurements, such as the Visual Analogue
Scale (VAS) or other qualitative reports; however, EEG
has been the more reliable predictor due to its temporal
precision [2, 7, 8].
Fatigue is a decreased ability to initiate or sustain volun-
tary actions, including difficulties with alertness, mental
performance, and reduced efficiency. It is gradual and cu-
mulative and applies to psychological and physical activ-
ity. Mental fatigue is concerned explicitly with reduced
or impaired cognitive functions that are believed to be
caused by prolonged cognitive activity. Mental fatigue
can also influence physical performance.
There have been different approaches to defining men-
tal fatigue with EEG, including detecting an increase in
the ratio of slow wave to fast wave as the fatigue pro-
gresses [9]. Additionally, particular areas of the brain
and frequencies that indicate the increase in fatigue have
been determined. Some of the findings seem to contradict
each other. For example, a study by Eoh and colleagues
(2005), and a study by Stern found a decrease in the al-
pha band as drowsiness increased [11, 12]. However, a
later study by Jap and colleagues found that alpha waves
increased in the occipital lobe as fatigue progressed [13].
On the other hand, Eoh and Jap outlined that the beta
band decreases with the progression of fatigue in tem-
poral and frontal areas, and the (theta+alpha)/beta ratio
increases [11, 13]. Both studies looked more into the
drivers’ fatigue and sleepiness, possibly influencing the
outcomes. Trejo and colleagues (2015) came to the same
conclusions as Jap and colleagues, stating that an increase
in parietal alpha and frontal theta was present, along with
a shift in alpha frequency to the lower alpha band [13,
14]. According to the meta-study, the increase of theta
waves in the frontal, central, and posterior regions is as-
sociated with fatigue, additionally, the rise of alpha in
central and posterior frequency serves as a biomarker of
fatigue [15].
Other researchers have previously investigated fatigue
in BCI rehabilitation. In 2010, a paper was published
by Prasad and colleagues who researched BCI used for
upper-limb recovery [2]. The Visual Analogue Scale
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(VAS) was used to examine fatigue. Some participants
exhibited increased mental fatigue, but the details were
unclear as it did not allow for temporally precise re-
sults. The study by Foong and colleagues (2020) also
concentrated on the neurorehabilitation of upper limbs
for stroke survivors through the use of BCI technolo-
gies [16]. To examine mental fatigue, the researchers ex-
tracted 3-second data before each trial to correlate it with
the subject’s performance, and they concentrated on the
shifts of amplitude of beta waves across different brain
areas separately (frontal, central, parietal-occipital). The
findings showed a significant positive correlation of beta
power with accuracy in frontal and central brain regions,
which suggested that mental fatigue in BCI tasks was as-
sociated with the performance outcomes [16]. However,
the shortcoming of this approach is that it only considers
beta bands without looking into theta, delta, and alpha,
which were associated with mental fatigue in the previous
literature. On the contrary, a study by Talukdar and col-
leagues found that there is a significant increase of spec-
tral power in the range of 0.1-12 Hz but no significant
findings in the beta band after performing the MI task on
BCI [17]. With that in mind and to our knowledge, no
studies have examined the effects of BCI-HMD systems
on mental fatigue after performing MI tasks.
In this study, we used a proprietary constructed real-time
BCI-HMD system for motor rehabilitation of the upper
limbs of subjects after stroke [18]. We performed a se-
ries of 13 training sessions (days) on a subject with post-
stroke motor impairment of the left upper limb. Part of
the training process is the collection of EEG data during
resting state periods preceding and following the training
itself. This paper focuses on quantitative EEG analysis
(qEEG) of changes the training can induce on the rest-
ing state eyes closed (EC) and eyes open (EO) EEG, or
passive BCI. We focused on the oscillatory part of the
EEG spectrum in the frequency range from 2.5 Hz to 18.0
Hz. Significant post-training changes were observed in
the EC condition, indicating EEG slowing. Changes in
the EO condition were sporadic and restricted to faster
alpha and beta EEG frequencies. A shift in the domi-
nant alpha frequency to the lower alpha band was also
observed. These changes align with changes associated
with increased mental fatigue, as reported by Trejo and
colleagues [14].

MATERIALS AND METHODS

In the study, the previously developed and described BCI-
HMD system was used [18]. Its architecture is depicted
in Fig. 1, representing the standard BCI design consisting
of

• signal acquisition,
• signal processing and classification and
• environment control.

Publicly available OpenVibe1 software for BCI and real-
time neuroscience interconnect three major blocks of the

1http://openvibe.inria.fr

Figure 1: The architecture of the brain-computer interface with
a head-mounted display (BCI-HMD) and the functional electri-
cal stimulation (FES) element.

BCI-HDM architecture. An autonomous Oculus Quest
2 (Meta Platforms, Inc.) headset with a fast processor,
a new-generation graphics card, and 256 GB of internal
storage is used as the HMD. The neurorehabilitation sys-
tem is also enriched with the functional electrical stimu-
lation (FES) component applied to selected muscles. This
is done through the programable two-channel externally
controlled Microstim FES device (Medel GmbH).
The main element of BCI training is the task of motor im-
agery (MI), during which the subject imagines the move-
ment without including movement of the limb. During
this effort, required changes in brain activity are recorded
using an EEG on the subject’s scalp. If these changes
are detected successfully, the requested visualization in
the VR environment will begin. Such a visualization
could exhibit an avatar’s hand grasping a cup on the ta-
ble (Fig. 2). In this study, we used three randomly vary-
ing tasks: grasping a cup, a cube, and turning a key in a
lock. Because our goal is not the description and analysis
of the BCI training itself but the analysis of brain activ-
ity changes during the resting state before and after the
training, we do not describe the design of the BCI-HMD
further and refer the reader to [18].

Figure 2: An example of a virtual environment (a cup) with an
object grip animation.

Experimental Protocol: Each training day (session)
started with two minutes of the resting state block with
eyes closed (EC) followed by two minutes of the rest-
ing state block with eyes open (EO). The same EC and
EO resting state EEG was recorded after each BCI-HMD
training session. During the EO condition, the subject
fixated his eyes on a small cross on the wall in front of
him.
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A self-made questionnaire was provided at the beginning
of each session and after completing resting state EC and
EO EEG recordings. The subject was asked to answer
the question "Do you feel tired?" on a seven-level scale
(1 - absent feeling, 7 - extreme feeling). In addition, after
each block of BCI-HMD training trials, six questions fo-
cused on the subjective evaluation of cybersickness and
tiredness were applied. However, in this paper, EEG data
recorded during the BCI-HMD training and their connec-
tion to subjective assessment of cybersickness and mental
fatigue development during the training itself are not an-
alyzed.
The BCI-MHD experiment consists of a series of trials in
which the subject is instructed to imagine a movement of
their avatar hand in VR mentally. In this study, each ses-
sion consisted of three blocks with ten MI trials in each
block.

Participant: The subject of this study is an 86-year-
old male who has experienced left-sided hemiparesis due
to a stroke in the basal ganglia region on the right side
with residual upper limb weakness (acral part). After
the stroke, he also suffers from fatigue syndrome with
Parkinson’s syndrome. In the time before the stroke, the
subject was a healthy, active athlete with no presenting
psychiatric diagnosis.
The subject participated in 13 days of BCI training from
May 11, 2023, to June 22, 2023. The sessions occurred
at intervals of 1 to 6 days.

EEG Signal Acquisition and Processing: Wire-
less g.Nautilus PRO FLEXIBLE FDA-cleared and CE-
certified recording system was used for EEG data ac-
quisition. The current experiment included 11 Ag/AgCl
wet electrodes attached to a fabric cap following a 10-
20 international system. The electrodes included on the
right hemisphere were FC4, C2, C4, C6, and CP4; the
electrodes on the left hemisphere included FC3, C1, C3,
C5, CP3, O1, as well as a linked-ears reference and one
ground electrode AFz.
For resting state conditions (EC/EO), we performed an
initial analysis with the sampling rate set to 250 Hz. EEG
data processing consisted of multiple steps applied in
Brain Vision Analyzer 2.3.02 (BVA) with templates and
expert supervision. First automatic artifact detection step
with criteria of maximal allowed voltage set at 50 μV/ms,
maximal absolute amplitude set at 70 μV, lowest allowed
activity in intervals of 100 ms set to 0.5 μV, and maxi-
mally allowed difference of voltages in intervals of 20 ms
was to 70 μV was applied. EEG traces with detected ar-
tifact segments were then visually inspected by a trained
expert, and artifact markers were edited.
Artifact markers were exported from the BVA software,
and further analysis was carried out in the MATLAB3

software.
EEG band amplitudes were analyzed for the oscillatory
part of the frequency spectrum. The decomposition of the
total frequency spectrum into fractal (representing back-

2https://www.brainproducts.com/solutions/analyzer
3https://www.mathworks.com

ground EEG) and oscillatory components was done using
the irregular-resampling auto-spectral analysis (IRASA)
[19]. IRASA decomposes the amplitude spectrum of
each segment into a fractal (scale-free) and an oscilla-
tory part. Different mechanisms may generate EEG os-
cillatory and fractal components, so it is essential to es-
timate them separately, mainly when the measurement
focuses on localized narrow-band oscillatory rhythms,
as is the case here. The oscillatory part of the am-
plitude spectrum was obtained by subtracting the frac-
tal part from the total spectrum estimate. Negative val-
ues of the oscillatory spectrum were set to zero. In the
study, we focused on the oscillatory part of the spec-
trum to measure band amplitudes from 2.5 Hz to 18.0
Hz. Both spectrum parts were computed with a resolu-
tion of 0.4883 Hz. The analyzed EEG endpoints were
standardized quantitative qEEG measures in the follow-
ing ranges: delta (2.5-4Hz), theta (4-8 Hz), alpha1 (8-10
Hz), alpha2 (10-12 Hz), beta1 (12-15 Hz), beta2 (15-18
Hz), alpha individual (6.4-9.8Hz). Additionally, ASI (al-
pha slow wave index defined as a ratio of (alpha1 + al-
pha2)/(delta + theta)), TBR (theta/(beta1 + beta2) ratio),
and BAR (beta1/(alpha1 + alpha2) ratio) derived mea-
sures were included.
Using a paired t-test, we analyzed differences between
the above-defined measures computed from EEG traces
recorded before and after the training. This testing was
done separately for each electrode in eyes closed and eyes
open condition.
In the subjective evaluation of fatigue, the days were sep-
arated by the answers to the tiredness question. The
first group included sessions in which increased tiredness
was reported after the BCI training compared to the pre-
training response (sessions 1, 2, 8, 11, and 12). The re-
maining eight sessions created the second group, includ-
ing the days of the same reported fatigue or decreased
fatigue after the training session. Then, the percent of
change (PC)

PC = (𝑝𝑜𝑠𝑡 − 𝑝𝑟𝑒)/(𝑝𝑜𝑠𝑡 + 𝑝𝑟𝑒)

between post- and pre-training endpoint values were
computed for each endpoint and electrode. The PC of
each of the two groups was computed by averaging all
sessions corresponding to that group.

RESULTS

Eyes Closed: Fig. 3 shows a summary of significant
before and after BCI-HMD training amplitude band dif-
ferences. A significant after-training delta increase can
be observed at the C2 and CP4 electrodes. Theta sig-
nificantly increased at both fronto-central FC3 and FC4
EEG channels. Alpha1 post-training decreased at the O1
and CP4 electrodes. Alpha2 post-training decreased at
the C1, C2, and FC4 EEG electrodes, but increased at the
O1 electrode. Significant changes in the beta range were
sporadic and limited to the beta1 post-training increase at
O1.
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The derived ASI, TBR, and BAR measures mimicked the
observed changes in amplitude bands and indicated over-
all EEG slowing. Increasing slower delta and theta fre-
quency bands and decreased alpha bands are reflected by
a significantly broader post-training ASI decrease in the
left hemisphere (FC3, C1, C3) and the right hemisphere
(FC4, C2, C4, C6). TBR increases at the FC4 electrode
and reflects an observed significant increase of theta at the
same electrode site. A significant post-training increase
in BAR was limited to the O1 electrode.

Figure 3: Bar chart showing significant post-training and pre-
training amplitude band differences for the eyes closed (EC)
condition. The statistical significance of the differences was
tested using a paired t-test. Results are shown by EEG chan-
nel and amplitude band. Positive values indicate a post-training
increase and negative values decrease. Values represent ampli-
tude per Hz differences (μV/Hz). For ASI, TBR, and BAR, the
values represent a ratio. *p < 0.05, **p < 0.01, ***p < 0.001

Fig. 4 shows oscillatory spectrum differences between
post-training and pre-training spectrum averages calcu-
lated over 13 sessions. Pre-training and post-training os-
cillatory spectrum overlay is depicted in Fig. 5. As can be
seen, the theta band significantly increased in frontal and
central areas (more prevalent on the left side). There is
also a decrease of alpha1 in central, frontal, and parietal
electrodes, mainly on the right hemisphere.
When analyzing post- versus pre-training endpoint values
grouped according to the subjective evaluation of tired-
ness, there was a 22.24% (at electrode C2) and 19.74%
(at electrode CP4) PC increase in the delta band in the
increased fatigue group. In the group where no increase
in fatigue was subjectively indicated, the delta PC was
12.69% (electrode C2) and 7.43% (electrode CP4). Al-
though limited to a single endpoint, these findings are
consistent with some previous research [8, 20].

Eyes Open: Significant post-training changes in the
EO condition were sporadic and restricted to faster EEG
frequencies (alpha, beta) than the resting state EC con-
dition. A summary of significant before and after BCI-
HMD training amplitude band differences is shown in
Fig. 6. A post-training increase was observed in alpha1
at CP4, but a more systematic decrease of alpha2 was

Figure 4: Eyes closed (EC) oscillatory spectrum difference
computed as a difference between post-training and pre-training
oscillatory spectrum averages calculated over 13 sessions. Pos-
itive values indicate a post-training increase and negative val-
ues decrease. Dots indicate frequencies where significant dif-
ferences were observed using a paired t-test (p < 0.05).

Figure 5: Eyes closed (EC) spectrum overlay of pre-training
and post-training oscillatory spectrum averages calculated over
13 sessions. Dots indicate frequencies where significant differ-
ences were observed using a paired t-test (p < 0.05)

observed in the right hemisphere (C4, C6, CP4). TBR in-
creased at CP3. This significant change in TBR is driven
by post-training theta increase and beta decrease. The
change can be observed in Fig. 7 and Fig. 8.
Similarly to Fig. 4, Fig. 7 shows significant EO changes
depicted as oscillatory spectrum differences between
post- and pre-training spectrum averages calculated over
13 separate sessions. Pre-training and post-training oscil-
latory spectrum overlay is depicted in Fig. 8. Around 9 to
10 Hz, a rapid negative to positive post-training change
can be observed. This frequency span defines the sub-
ject’s alpha frequency range, and the rapid change repre-
sents a shift from the dominant alpha to the lower alpha
band.
No consistent results were found when subjectively re-
ported fatigue levels collected before and after the train-
ing sorted endpoint values.

DISCUSSION

The study assessed mental fatigue using EEG collected
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Figure 6: Bar chart showing significant post-training and pre-
training amplitude band differences for the eyes open condition
(EO). See Fig. 3 for description.

Figure 7: Eyes open (EO) oscillatory spectrum difference com-
puted as a difference between post-training and pre-training os-
cillatory spectrum averages calculated over 13 sessions. Dots
indicate frequencies where significant differences were ob-
served using a paired t-test (p < 0.05).

from resting state EC and EO periods recorded before
and after the BCI-HMD training. As previous research
has shown, mental fatigue is associated with the increase
of theta band power in the frontal area and alpha in the
parietal area, as well as with a shift in alpha frequency to
the lower alpha band [14]. These changes could be seen
as a result of completing a monotonous task consisting of
solving simple mathematical problems and lasting up to
three hours. These findings were also restricted to the EO
condition because subjects solved the task displayed on
a screen [14]. In the current study, we observed a signif-
icant post-training theta band increase at the frontocen-
tral spatial region, and this was true for the EC condition.
This theta increase is also consistent with the findings by
Jap, Barwick, and DeGennaro [7, 8, 13].
The alpha effect was less clear. Considering alpha1 and
alpha2 frequency sub-bands, we observed an increased
EO alpha1 in the right central-parietal region but a de-
crease of the same alpha1 in the EC condition. Alpha2
decreased in both EC and EO conditions, which was true
mainly for the central and central-parietal regions, except

Figure 8: Eyes open (EO) spectrum overlay of pre-training and
post-training oscillatory spectrum averages calculated over 13
sessions. Dots indicate frequencies where significant differ-
ences were observed using a paired t-test (p < 0.05).

for the O1 electrode in the EC condition, alpha2 post-
training increased.
The described study analyzed only one participant; there-
fore, no more robust conclusions can be made from the
findings, and broader research is necessary. Instead, the
presented study serves as an introduction to the problem
of induced mental fatigue in BCI-HMD MI training of
stroke patients. The study doesn’t address other essen-
tial elements that need to be controlled for, such as circa-
dian rhythms, caffeine intake, the quality of sleep, and
other phenomena affecting mental fatigue. Therefore,
it remains an open question whether the reported post-
training differences could be explained by mental fatigue
or other possible factors associated with using the BCI-
HMD system, such as visual fatigue, lack of motivation
or interest, frustration, sleepiness, or even dizziness. The
provided questionnaire considered some of those ques-
tions, and the obtained subjective scores will be analyzed
in future research. Including these elements in further
research may lead to a more precise separation of men-
tal fatigue from sleepiness, lack of engagement, or other
similar yet different mental phenomena.

CONCLUSION

The research findings could be utilized to compose cus-
tomized machine-learning algorithms for motor rehabil-
itation of post-stroke patients using the BCI-HMD envi-
ronment. Considering mental fatigue in training sessions
could increase rehabilitation outcomes; more specifically,
it could suggest improvements in task design and data
analysis.
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