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Abstract. The Tucker model is a tensor decomposition method for
multi-way data analysis. However, its application in the area of multi-
channel electroencephalogram (EEG) is rare and often without detailed
electrophysiological interpretation of the obtained results. In this work,
we apply the Tucker model to a set of multi-channel EEG data recorded
over several separate sessions of motor imagery training. We consider a
three-way and four-way version of the model and investigate its effect
when applied to multi-session data. We discuss the advantages and dis-
advantages of both Tucker model approaches.
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1 Introduction

A compact and physiologically interpretable representation and analysis of elec-
troencephalographic (EEG) data represent a challenging task. An important
part of EEG analysis is the detection of latent sources of rhythmic activity in
the time-varying EEG spectrum. For this purpose, the frequency decomposition
of EEG signals, like the fast Fourier (FFT) or wavelet transform (WT), is often
used. The time modality is often represented by a sequence of short EEG win-
dows at which the frequency decomposition is applied. Finally, because EEG
is often recorded at multiple electrodes, the third important modality is space,
represented by different montages of EEG electrodes on the scalp. Other modal-
ities often associated with EEG data analysis are the separation of subjects into
different groups (male vs female, healthy vs patient, etc.) or experiments with a
set of, in time separated, recorded sessions (different days, blocks of trials, etc.),
to name a few. Therefore, the arrangement of EEG data into a multi-way array
(a tensor) and application of the proper multi-way array decomposition method
represents a natural way to analyse EEG data [3,7].

This contrasts with a set of traditional methods, for example, the principal
component analysis (PCA) or independent component analysis (ICA), which
operates on a two-way array where different modalities are concatenated into a
single-mode (frequency and space or time and space, etc.).
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The most frequently used tensor decomposition methods are the parallel
factor analysis (PARAFAC) [5] and the Tucker model [12]. In both models, a
multi-way array is decomposed into a set of interpretable matrices representing
latent sources of variability present in data.

In the study, we focus on the tensor decomposition of EEG data with the
aim of detection, monitoring, and analysis of latent sensorimotor EEG rhythms
activated during motor imagery-based neurofeedback training of patients with
hemiplegia due to a stroke.

We already successfully demonstrated the usefulness of PARAFAC when
applied to multi-channel EEG data [9,10]. However, in these studies, each subject
and each training session data were analysed separately, and the subject-specific
PARAFAC latent factors, common across all training sessions, were detected in
a semi-automatic way by using a combined data clustering and visual inspec-
tion approach. Therefore, it is reasonable to ask if these common latent factors,
referred to as ‘atoms’, could be extracted by analysing the combined data pooled
across all training sessions and in one step. Note, in our experimental design, a
session represents motor imagery-based training on a separate day.

Following the previous detailed analysis of identified EEG rhythms across
days and subjects [9], we hypothesise, that simultaneous analysis of all training
sessions may lead to the direct detection of subject-specific atoms, which would
closely match the ones extracted using a single session approach. To do this, it
turns to be natural to rearrange EEG data into a four-way tensor representing
time, space, frequency, and session modes. However, the training sessions do
not share common patterns in the time domain, because the number of motor
imagery tasks and the subject’s performance varies across days. In other words,
the value representing a session needs to be considered as a qualitative, not
quantitative, variable in the four-way tensor arrangement. This also leads to
the second form of data representation where data across the time mode are
concatenated and create one large three-way tensor.1

In this study, we discuss the advantages and disadvantages of the two
approaches and validate their performance to detect subject-specific motor
imagery related EEG rhythms of two patients with hemiplegia.

Our preliminary study showed that the Tucker model can produce a more
compact representation of data than PARAFAC [11]. Interpretation of the four-
way PARAFAC would be difficult when applied to data collected across different
sessions. This is because the PARAFAC model assumes the same number of com-
ponents in each mode. To adequately model variability of the time activation
of a given atom across different sessions, it would be required to set the num-
ber of components in the PARAFAC model to be several times higher than the
number of sessions. This would lead to an unnecessarily complex model with dif-
ficult interpretability of the extracted components. On the other hand, a flexible
Tucker model with appropriate restrictions is applicable also in the case of multi-
session recordings. Therefore, in this study, we focus on the Tucker model only,

1 This approach can be interpreted as an unfolding of a four-way tensor [2].
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and we validate and compare our results with subject-specific atoms previously
obtained by applying PARAFAC to each session separately.

2 Data

Multi-channel EEG data of two patients with right-hand hemiplegia recorded
over twenty-four and eight motor imagery-based neurorehabilitation training
sessions with the robotic splint were used in the study [8]. During the training
blocks, a trained technician recorded EEG continuously using 12 active Ag/AgCl
electrodes embedded in an elastic fabric cap (g.GAMMAcap; g.tec medical engi-
neering, Schiedlberg, Austria). The technician placed the electrode cap on the
participant’s head according to the manufacturer’s instructions, attaching six
active EEG left-side scalp electrodes (FC3, C1, C3, C5, CP3, and O1), six active
right-side electrodes (FC4, C2, C4, C6, CP4, and A2), one reference electrode
(A1), and one ground electrode (AFz). Later, for signal processing, we used the
signal from the A2 electrode to re-reference all EEG recordings to the aver-
age earlobe [(A1+ A2)/2] signal. A 16-channel g.USBamp system (g.tec medical
engineering), with the sampling rate 128Hz served to record all EEG signals.

We performed initial analyses using the BrainVision Analyzer 2 software
(Brain Products, GmbH). This involved automatic artifact detection with cri-
teria of maximally allowed voltage step 50µV/ms, lowest allowed activity in
intervals of 100ms set to 0.5µV, and maximally allowed difference of voltages in
intervals of 20ms set to 50µV. If any of the first two criteria were met, the inter-
val preceding and following the detected artifact by 150ms was marked as bad.
In the case of the third criterion, this interval was set to 50ms. Next, using the
same software, a trained technician visually inspected EEG data and detected
artifacts. The technician manually marked periods with undetected artifacts
and removed artifact markers wrongly assigned automatically. This included the
detection and removal of ocular artifacts.

The EEG signal was then segmented into two-second time windows with
250ms of overlap. For each time window, the oscillatory component of the ampli-
tude spectrum was estimated by the irregular resampling auto-spectral analysis
(IRASA) [13]. Possible negative spectral densities of the oscillatory part estimate
were set to zero and a value of one was added before performing the logarith-
mic transformation with a base of ten. Obtained logarithmic spectral data in
the frequency range of 4 to 25Hz and with the 0.5Hz frequency resolution were
re-arranged into:

i) a four-way tensor X(4) ∈ R+
I1×I2×I3×I4 (time × electrodes × frequencies ×

sessions)
ii) three-way tensors Yl ∈ RI1×I2×I3

+ , l = 1, . . . , I4 (time × electrodes × frequen-
cies), which were concatenated across the first mode into the final three-way
tensor X(3) ∈ RI1I4×I2×I3

+ .

The tensors X(4) and X(3) were centred across the first mode. To detect a
subject-specific oscillatory activity, the tensors were constructed and analysed
for each subject separately.
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3 Methods

The N -way Tucker model [12] decomposes an N -way tensor X ∈ RI1×I2×···×IN

into matrices A(n) ∈ RIn×Jn , n = 1, . . . , N and a core tensor G ∈ RJ1×J2×···×JN

Xi1,i2,...,iN =
N∑

k=1

Jk∑

jk=1

gj1,j2,...,jna
(1)
i1j1

a(2)i2j2
. . . a(N)

iN jN
+ ei1,i2,...,iN (1)

by minimising the sum of squared residuals.2 The tensor

E = (ei1,i2,...,iN )ik=1,...,Ik
k=1,...,N

∈ RI1×I2×···×IN

represents the noise term. The factor matrices A(n), n = 1, . . . , N are constrained
to have normalised columns.

In the study, we consider a four-way Tucker model (next denoted as
Tucker4D) for X(4) and a three-way Tucker model (Tucker3D) for the tensor
X(3). In both cases, the factor matrices A(1), A(2), A(3) represent time scores
(TS), spatial signatures (SS) and frequency signatures (FS), respectively. An
atom’s activation in time is represented by a single or a linear combination of
TS with weights equal to the corresponding elements of G.

In Tucker4D, the matrix A(4) characterises the presence of atoms across ses-
sions. However, as highlighted in the Introduction section, sessions do not share
common patterns in the time domain. In other words, atoms sharing the same
FS and SS should follow their own time scores for different sessions. Conse-
quently, A(4) should be a fixed matrix with a diagonal structure. However, due
to the unit norm assumption of the matrix columns, A(4) is considered as an
(I4 × I4)-dimensional identity matrix.

To improve the stability and interpretability of the Tucker decomposition, it
is recommended to constrain the solution following the character of the analysed
data [6]. Due to the fact that our data represent a positive log10-transformed
oscillatory part of the amplitude spectrum, we assumed the matrices A(2), A(3)

to be non-negative. Because we focus on extracting sources of narrow-band oscil-
lations, the columns of A(3) were constrained to be unimodal. Following our pre-
vious studies [9,11], the matrix A(1) in Tucker3D was set to be non-negative. For
Tucker4D, we considered two alternatives for A(1) – non-negativity and ortho-
gonality. In the following text, these two versions of Tucker4D are denoted as
Tucker4D N and Tucker4D O.

In [11], we observed an improvement in the physiological interpretation and
stability of the Tucker model decomposition with the non-negative constraint on
elements of the core tensor G. This was true in comparison to the model with an
unconstrained G structure. Following this result, we set the core tensor G to be
non-negative in all Tucker3D and Tucker4D model variants also in this study.
2 The PARAFAC model also follows the formula (1), but with the assumption of the
same number of factors in each mode (J1 = · · · = JN = J) and a super–diagonal
structure of G.
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Two stable SS patterns representing EEG oscillatory sources in the left or
right hemisphere were observed in [11]. Therefore, in the current study, the
number of SS was also set to two (J2 = 2). We varied the number of frequency
signatures (J3) between 8 and 11. Also, following our previous experience and
results [11], the number of TS was varied between J3 and 2∗J3. This follows the
observation that the majority of atoms in the left and right hemisphere often
show different time activation.

The variation of these parameters leads to a set of solutions (runs). Instead of
choosing one final Tucker model for a subject, we investigated all solutions whose
core consistency diagnostics (CCD) [1] was greater than 0.5. When validating
solutions of the Tucker3D and Tucker4D models we focused on the

– comparison of time, spatial and frequency characteristics of atoms obtained
from the models

– maximum number of factors necessary to adequately describe data structure
variability

– presence of stable atoms across solutions and their comparison with the
subject-specific atoms already known from applying the PARAFAC model
to each training session separately.

4 Results

An example of the Tucker3D model with 16 TS and 8 FS is depicted in Fig. 1. The
model detected eight oscillatory rhythms with the peak frequencies at 6.5, 8, 9.5,
11, 13, 14.5, 16.5, and 19.5Hz (Fig. 1, first row). Spatial signatures represent the
location of these oscillatory EEG sources either in the left or right hemisphere
(Fig. 1, first and second row, two right plots). The core tensor G slices represent
the relationship between SS and TS for a given atom (Fig. 1, second row, left).
For example, the time activation of the left 8Hz EEG rhythm across all sessions
corresponds to the 6th TS. For the right hemisphere, it is the 10th TS.

The interpretation and visualisation of the Tucker4D model is similar, how-
ever, in this case, G represents a four-way core tensor.

For both subjects, the core tensor G of the Tucker3D and Tucker4D N mo-
dels showed a sparse structure. For Subject 1 this is depicted in Fig. 1 (second
row) and Fig. 2 (top and middle rows). Consequently, the time activation of the
extracted atoms is equal to one TS (a column of A(1)) or to a linear combination
of a few of them. However, their interpretation differs between three- and four-
way models. For Tucker3D, the time scores are vectors with the length I1 ∗ I4
and they represent the time activation across all sessions, but for Tucker4D N
they characterise only one session.

Due to the sparse structure of G, the optimal number of time scores for
the Tucker3D model is approximately J2 ∗ J3 = 2 ∗ J3. But for Tucker4D N
it is J2 ∗ J3 ∗ k, k ≈ J4. However, in this study, we considered J1 to be at
most 2 ∗ J3, and therefore the Tucker4D N model did not have enough TS to
adequately describe data structure variability. Consequently, the model shows
a significantly higher mean squared error (MSE) in comparison to Tucker3D,
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Fig. 1. Subject 1. An example of the Tucker3D model with eight frequency signatures
(FS, first row), two spatial signatures (SS, first and second row, two right plots) and 16
time scores (TS, third and fourth row). Non-zero elements in slices of the core tensor
G for a given FS are depicted in the second row on the left (Color figure online).

but also when compared with the Tucker4D O model (Fig. 3). Naturally, an
improvement can be achieved by increasing the number of TS, but this would
be at the cost of longer computation time, numerical and convergence problems
as well as leading to higher complexity of the model.3 Therefore, we conclude
that the Tucker4D N model may not be appropriate when used in the studied
multi-session EEG recording scenario and was not further analysed.

In contrast to Tucker3D and Tucker4D N, the core tensor G after the conver-
gence turned to be dense in the case of the Tucker4D O models (Fig. 2, bottom).
In the Tucker4D O model, the columns of A(1) form an orthogonal basis and can
not be interpreted directly. More attention needs to be paid to each particular
linear combination of the A(1) columns representing the final time activation of
an atom in a given session.

A comparison of time activation of 8Hz right hemisphere oscillatory atom
for a randomly chosen session and solution of the Tucker4D O and Tucker3D
models is depicted in Fig. 4a. The observed differences between curves are due
to different constraints applied to A(1) in each of the two models. However, and
most importantly, the dynamic of both curves is very similar. Because the overall
dynamic profiles of time scores, and not their absolute values are in our focus,

3 For Subject 1, fixing the number of FS to eight and SS to two, the Tucker4D N model
with eighty TS shows MSE approximately of the same value as the Tucker4D O
model with sixteen TS.
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Fig. 2. Subject 1. Slices of the core tensor G for oscillatory atoms with the peak
frequencies at 8, 9.5, 11.5, and 14Hz of the Tucker3D (top row), Tucker4D N (second
row) and Tucker4D O (third row) models. Slices over the first session are depicted in
the case of the Tucker4D N and Tucker4D O models. The Tucker3D and both variants
of the Tucker4D model were run with 22 time scores (TS), 2 space signatures (SS) and
11 frequency signatures (FS). Only the non-zero elements of the core tensor G slices
are depicted (black circles).

we can conclude that both versions of the Tucker model led to comparable time
activation profiles.

Spatial signatures from all solutions (runs with different parameter settings)
of the Tucker3D and Tucker4D O models are depicted in Fig. 4b. Similarly to
[11], SS represent the spatial distribution of the oscillatory EEG activity either
in the left or right hemisphere. We observed high stability of these SS across all
runs and models.

Finally, we investigated the detectability and stability of FS across different
runs. For this purpose, DBSCAN [4], a density-based clustering method, was
applied to FS solutions of both Tucker3D and Tucker4D O models.

For Subject 1, the dominant clusters of FS of the Tucker3D and Tucker4D O
models represent EEG oscillatory activity with the peak frequencies at 8, 9.5,
11.5, 14, and 15.5Hz (Fig. 5a, middle, and bottom) and are consistent with FS
of the subject-specific atoms already detected by PARAFAC applied to each
training session separately (Fig. 5a, top).

The difference between considered approaches occurred only for rhythms with
higher frequencies (in the range of 17 to 19Hz). The Tucker4D O model FS
form a cluster with the peak frequency at 17.5Hz, which is consistent with
the PARAFAC results, but the corresponding Tucker3D model cluster indi-
cates a slight shift of the peak frequency of this atom to 16.5Hz. The rhythm
with the peak frequency close to 19Hz was detected in several runs of the two
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Fig. 3. Mean squared error (MSE) for the Tucker3D (red), Tucker4D N (green) and
Tucker4D O (blue) model runs for which the core consistency diagnostics was greater
than 0.5. In all models, the number of spatial signatures was set to two, the number
J3 of frequency signatures was set to 8 (!), 9 (!), 10 (∗) or 11 (!) and the number of
time scores (TS) varied between J3 and 2 ∗ J3 (Color figure online).
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Fig. 4. Subject 1. (a) Time scores (TS) for 8Hz oscillatory EEG activity in the right
hemisphere for a randomly chosen solution of the Tucker4D O (blue) and Tucker3D
(red) models. (b) Top: Spatial signatures (SS) from all runs of the Tucker4D O and
Tucker3D models representing spatial distribution of the oscillatory EEG activity in
the left and right hemisphere over the sensorimotor cortex. Bottom: scalp topographic
map of the average of SS depicted in the top plot. (Color figure online)

models (Fig. 1), but a stable cluster was identified neither in Tucker3D nor in
Tucker4D O.

Subject 2 specific atoms detected by PARAFAC show the peak frequencies at
8, 9.5, 11, 13.5, 16, and 17Hz. The dominant clusters of FS for both Tucker4D O
and Tucker3D indicate the peak frequencies at 7.5, 9-9.5, 11, and 13-13.5Hz
(Fig. 5b).
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Fig. 5. Frequency signatures (FS) of the atoms detected by the DBSCAN cluster
analysis. For each subject, the PARAFAC (top row), Tucker3D (middle row), and
Tucker4D O (bottom row) solutions are depicted. The grey curves represent cluster
elements for the Tucker models (individual solutions), the cluster representative (black
bold curve) was computed as an average of all solutions. In the title of each subplot,
the number of elements in each cluster is depicted in parenthesis. For PARAFAC, the
cluster analysis was applied within each session separately. Cluster representatives for
each session are depicted in green, the black bold curve represents their average (Color
figure online).

The rhythms at 16 and 17Hz formed stable clusters neither in Tucker3D
nor in Tucker4D O. However, when looking at the results of PARAFAC and
cluster analysis applied to each session separately (Fig. 5b), the atom with the
peak frequency 16Hz was present only in five of the eight sessions. The 17Hz
atom was also not stable, and for several sessions its peak frequency was shifted
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slightly upward (Fig. 5b, last figure in the top row). We hypothesise that the
failure of the Tucker model to detect the two atoms is caused by their smaller
activation in some sessions and by the fact that the Tucker model focuses on
atoms that show a higher variability across all sessions.

On the other hand, a stable cluster representing EEG oscillatory acti-
vity peaked at 10Hz occurred in both Tucker models, but not in the case of
the PARAFAC model. Both identified rhythms at 9-9.5Hz and 10Hz are very
close in frequency and the results of both Tucker models indicate a possible
frequency variation of this rhythm across individual sessions. Previous analysis
using EEG data recorded at the occipital O1 site during the resting state eyes
closed and eyes open conditions indicates that the atom represents the posterior
visual alpha rhythm. However, further session to session, as well as a higher fre-
quency and spatial resolution analysis would be needed to confirm the relevance
of this physiological interpretation of the rhythm.

5 Conclusion

The benefit of the tensor decomposition methods for the extraction of narrow-
band oscillatory rhythms from EEG records of patients after ischemic stroke has
been already demonstrated [9,10]. However, the neurorehabilitation sessions were
analysed separately and the subject-specific atoms were detected in a separate
semi-automatic step consisting of cluster analysis and visual inspection of the
results [10]. As both procedures are time-consuming, especially for subjects with
a higher number of sessions, we search for a more efficient approach.

In the study, we dealt with a simultaneous analysis of the multi-channel EEG
recorded during multiple sessions (days) of the motor imagery-based neurofeed-
back training of two patients with hemiplegia. Two approaches were considered

– Tucker4D: the four-way Tucker model, either with non-negative or orthogonal
time factor matrix A(1), and applied to data arranged into of a four-way tensor

– Tucker3D: the three-way model with unfolded data from all sessions across
the time mode resulting in one large three-way tensor.

The benefit of the Tucker3D model in comparison to PARAFAC was already
demonstrated in [11]. However, we observed a practical disadvantage of the
model. The Tucker model algorithm is based on the Kronecker products [2].
For tensors with one mode of a large size, the Kronecker product matrices are
large in size and they can require up to several GB of computer memory. There-
fore, an appropriate optimisation of the algorithm may be needed if the number
of analysed sessions grows. To address this problem, in this study, we also inves-
tigated the Tucker4D model, where the memory allocation is reduced.

For Tucker4D N, the assumption of the non-negative time scores matrix A(1)

showed to be inappropriate. The model showed significantly higher MSE than
the Tucker3D and Tucker4D O models. An improvement can be achieved by
increasing the number of components to a multiple of the number of sessions.
However, that leads to an unnecessarily complex model and possible numerical
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problems. Better results were observed for the alternative four-way Tucker4D O
model in which the columns of A(1) formed an orthogonal basis. In this case,
the number of time scores was chosen to be at most 2 ∗ J3. Using the estimated
elements of the core tensor G, the weighted linear combinations of the A(1)

columns then represent the final time activation for an arbitrary atom.
The Tucker3D and Tucker4D O models produced consistent results when

validating obtained spatial and frequency signatures, as well as time scores. But
what is more important, in both cases we were able to detect stable atoms
which were consistent with the subject-specific atoms already detected by a
combination of the PARAFAC model and a cluster analysis applied to each
training session separately [10,11]. This was especially true for slower frequency
rhythms (7 to 15Hz), which are in the focus of the studied motor imagery related
changes of EEG oscillatory activity.

We can conclude that both approaches showed comparable and adequate
results when applied to the simultaneous analysis of multi-session recordings of
multi-channel EEG. When the subject-specific atom extraction is in the focus,
they provide a time-saving alternative to the tensor decomposition applied to
each session separately.
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