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Abstract—Prolonged use of brain—computer interfaces (BCIs)
with virtual reality (VR) via head-mounted displays (HMDs)
induces mental fatigue, potentially impairing
neurorehabilitation. This study examines EEG-based fatigue
markers in healthy participants during extended BCI-HMD
sessions. Fatigue was classified using N-way Partial Least
Squares (N-PLS) with linear discriminant analysis, achieving
82.42% (£7.5) accuracy. N-PLS components revealed spatial—
spectral patterns in occipital and sensorimotor alpha activity.
Temporal trajectories indicated progressive fatigue
accumulation during sessions. Results demonstrate the
feasibility of EEG-based fatigue monitoring for optimizing
BCI-HMD post-stroke neurorehabilitation.

L INTRODUCTION

Integrating brain—computer interfaces (BCls) with
virtual reality (VR) via head-mounted displays (HMDs)
has a strong potential for post-stroke motor
neurorehabilitation by enabling motor imagery (MI)
training in immersive, ecologically valid environments.
However, mental fatigue poses a major challenge to long-
term BCI-HMD use, degrading MI performance and user
engagement.

Mental fatigue is a complex cognitive state marked by
reduced attention and increased effort during sustained
tasks. While often assessed subjectively, EEG-based
biomarkers, such as increased theta and alpha amplitude,
offer objective indicators of fatigue progression [1].
Previous studies have examined these markers [2], [3], but
little is known about their evolution during extended BCI-
HMD use.

This study investigates neural markers of mental
fatigue during long-term BCI-HMD VR sessions in healthy
participants. Using N-way Partial Least Squares (N-PLS),
we extracted latent EEG patterns associated with fatigue
induced by sustained MI. The objective of this work is to
contribute to the design of adaptive, real-time BCI-HMD
systems tailored for practical use in post-stroke motor
neurorehabilitation.

II. MATERIALS AND METHODS

Experiment Design

The study employed a structured experimental design
to investigate fatigue dynamics in a neurorehabilitation
setting, particularly when using MI. Participants followed
pre-session guidelines to minimize baseline fatigue and
engaged in three sessions: a Mirror box session, a VR
motor imagery session, and a Control session. Continuous

EEG recordings captured neural activity using the
previously developed BCI-HMD system [4], with pre- and
post-task assessments enabling analysis of sustained
cognitive load and mental fatigue effects.

The experiment involved pre- and post-session resting
state EEG recordings with eyes closed (EC) and eyes open
(EO), a continuous performance test (CPT), and fatigue
and cybersickness related questionaries.

EEG data were captured using the wireless g.Nautilus
PRO FLEXIBLE system, an FDA-cleared device equipped
with 32 Ag/AgCl wet EEG electrodes arranged according
to the international 10-20 system; the HMD utilized was an
autonomous Oculus Quest 2 (Meta Platforms, Inc.) headset
and a publicly available software OpenViBE was used to
interconnect these components.

EEG data were initially collected from 15 participants
during the mirror box experiment. Due to dropouts, data
was collected from 9 participants in the VR session and 10
in the Control session, with 8 completing all three sessions.
One subject was excluded due to excessive artifacts,
resulting in 7 subjects included in the final analysis.

Both VR and control sessions had 3 blocks of 25 trials.
During the VR session, participants engaged in a MI
paradigm, where they mentally imagined gestures without
any physical movement when prompted by a voice
command. Each trial consisted of resting state that lasted
20s and is used to set a threshold for the motor imagery
phase. Throughout the trial, EEG signals were
continuously monitored via the BCI-HMD system. When
the required neural patterns were detected, a virtual arm
animation was triggered, reaching toward an object, as
illustrated in Fig. 1. If no activation was detected, the trial
was automatically terminated after 20 seconds. After the
motor imagery phase there was a 2-7s pause. Therefore, in
total the trial lasted approximately 50s and each session
lasted around one hour.

Figure 1. Patient grasping the cup in virtual reality



The control condition featured the same visual stimuli,
however participants passively observed the scenario, with
random trials marked as successful to control visual
engagement. The probability of successful trials in the
control session was 0.3, 0.4 and 0.35 for each block
respectively.

N-way Partial Least Squares Method

N-PLS is a supervised machine learning method that
extends traditional PLS by projecting the multi-way input
X € RhixlzXXIN and response arrays YeE
RrxlxIz%.-XImM onto a lower-dimensional latent space that
captures the maximum covariance between them [5]. In our
study, the tensor X captures the multi-dimensional EEG
data across time, frequency, and spatial modes. The Y
matrix represents the class-membership labels or
associated class information. For resting state EEG data we
separated the harmonic and aperiodic components of the
amplitude spectrum using the IRASA method [6].

This was performed on every 2-second segment of EEG
data using a sliding window of 500 milliseconds.

After the extraction of a sub-set of & N-PLS latent
variables T € R™¥ the two-class linear discriminant
analysis was applied to classify low- and high-levels of
mental fatigue.

III. RESULTS

To discriminate between low and high mental fatigue
for each subject individually, artifact-free resting-state
eyes-open (EO) EEG data collected before (low-fatigue
class i.e. 0) and after (high-fatigue class i.e. 1) VR motor
imagery and control sessions were combined. We applied
5-fold cross-validation to the combined dataset,
performing 4-factor N-PLS on each fold. Applying the
trained model on the test set across folds yielded an average
classification accuracy of 82.42% (£7.5) across the seven
subjects. The resulting factors were averaged across folds
to obtain generalized components that are used for
prediction of fatigue during the sessions. To avoid
overfitting, we manually selected the optimal number of
atoms for each subject based on performance across folds.

To illustrate the model performance, Fig. 2 shows the
predicted N-PLS output values and true fatigue labels for
subject 05 on the fold 1 test set.

We analyzed the latent variables (components)
extracted by the N-PLS to gain insight into the underlying
representations learned by the model. Each factor
comprises weights distributed across the spatial and
frequency dimensions, reflecting how the model leveraged
different brain regions and spectral bands. In Fig. 3, we
present the frequency weights alongside the corresponding
spatial topographies for each of three selected N-PLS
components for subject 05.

The frequency and spatial profiles of the extracted N-
PLS components reveal distinct neurophysiological
patterns associated with fatigue levels discrimination. The
first latent factor exhibits a prominent spectral peak
centered around 8.7 Hz, with the corresponding
topographic weights predominantly localized over the

occipital region. The second factor is characterized by a
positive peak at 8.3 Hz and a notable negative deflection at
11.7 Hz. Spatially, this component is primarily distributed
over the left central region, with the strongest weights near
the C3 electrode. The third factor shows a mild negative
dip from 6.8 to 7.8 Hz followed by a peak at 9.7 Hz, with
the topographic distribution focused over the occipital area
with a slight lateralization to the right hemisphere.

To further interpret the neurophysiological basis of the
N-PLS components, we examined the harmonic spectra of
real EEG data from Subject 05 shown in Fig. 4 and 5.
Notably, at the O1 electrode and neighboring parietal and
occipital EEG channels, the most pronounced difference
between the pre- and post-resting-state conditions was
observed at 8.7 Hz, aligning with the peak frequency
captured in the first N-PLS component. This suggests that
changes in occipital alpha amplitude, particularly in the left
hemisphere, contribute significantly to the model's
discriminative capability.
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Figure 2. Comparison of predicted output values and true fatigue
levels (low and high) for subject 05 on fold 1 test set, obtained using a N-
PLS model trained on combined resting-state eyes-open EEG data
collected before and after VR motor imagery and Control sessions.
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Figure 3. Frequency weights and topographies for the three latent
variables of the N-PLS models of Fig.1. Each component illustrates the
spectral and spatial features the model uses to discriminate between low-
and high-fatigue states for subject 05.




At C3, located over the left sensorimotor cortex, we
observed a leftward shift in the alpha peak frequency,
reflecting a slowing of alpha activity, a phenomenon well-
documented in fatigue-related EEG literature. Specifically,
frequencies around 8.3 Hz and 11.7 Hz, highlighted in the
second N-PLS component, correspond to the most
substantial divergence in the slope of the alpha peak
between conditions, reinforcing the component’s relevance
to changes in the sensorimotor cortical areas caused by
fatigue.

Lastly, over the right parieto-occipital region—
particularly at electrodes O2, PO8, and P8—spectral
analysis revealed both an increase in alpha amplitude and
a leftward shift of the alpha peak, with the pre-resting state
condition alpha maximum centered at 9.7 Hz. This pattern
aligns with the third N-PLS component, which captures a
subtle reduction around 6.8—7.8 Hz and a peak at 9.7 Hz,
localized over the right occipital scalp. These observations
collectively provide physiological grounding for the
extracted N-PLS components and help explain the specific
spectral and spatial characteristics identified by the model.

Following the analysis of latent variables and the
evaluation of classification performance on the test set, the
trained N-PLS models were applied separately to the
continuous data from each session. The aim was to
investigate whether the models could capture the temporal
evolution of mental fatigue and whether they could be used
to visualize gradual fatigue accumulation over time.

Fig. 6 and 7 present the predicted fatigue trajectories
for subject 05, with the percentage of artifact-free EEG
electrodes shown above each time point to indicate EEG
signal quality. Importantly, predictions were performed on
data containing artifacts, to mimic realistic conditions
under which this method would be deployed in an online
BCI-HMD  neurorchabilitation — setting. In  such
applications, real-time mental fatigue monitoring must
operate on raw or minimally processed EEG signals,

Figure 4. Harmonic spectra of EEG signal at electrode C3 for subject
05.
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Figure 5. Harmonic spectra of EEG signal at electrodes O1 (left) and
02 (right) for subject 05.

as artifact removal and reduction of EEG electrodes is not
feasible during live sessions.

This approach thus evaluates the practical applicability
of the proposed method in ecologically valid, real-world
scenarios. For each of the seven subjects, we computed the
mean N-PLS classification scores from the VR motor
imagery and Control sessions to illustrate the temporal
evolution of predicted fatigue levels throughout each
session. Fig. 8 displays each subject’s predicted mental
fatigue scores across multiple time points. Each plot shows
eleven predicted fatigue values per subject: the first
corresponds to the pre-session rest-state measurement, the
next nine represent predicted fatigue scores across three
experimental blocks (three values per block), and the final
value reflects mental fatigue prediction at the post-session
resting state condition.

For all subjects, there is a noticeable increase in
predicted mental fatigue scores toward the fatigued state by
the end of the experiment, with occasional temporary
decreases. This trend is evident across both experimental
conditions, indicating that the N-PLS model effectively
captures the gradual increase in mental fatigue over time.

L"'-'l, |I*"""J-rl‘ == .'!.l"ll'-\-"":)l \n'-lt
Sk Bk & s 2
il * -
e F-lpJ
i M 4 My "
? i I"rn'."l \'\-J'I'l Ir..f Ll
¥ l._ll"-.L;wI. I|H| Y

Figure 6. N-PLS-based mental fatigue classification scores across VR
session segments (pre, blocks 1-3, post) and the corresponding percentage
of artifact-free EEG electrodes for subject 05.
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Figure 7. N-PLS-based mental fatigue classification scores across the
Control session segments (pre, block 1-3, post) and the corresponding
percentage of artifact-free EEG electrodes for subject 05.
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Figure 8. Predicted mental fatigue levels across the VR motor imagery (left) and Control (right) sessions for seven subjects, based on N-PLS classification

Scores.

Iv. CONCLUSION

This study demonstrates the feasibility of using EEG-
based biomarkers to detect mental fatigue during extended
sessions involving brain—computer interfaces integrated
with virtual reality head-mounted displays (BCI-HMD).
By applying N-way Partial Least Squares (N-PLS) with
linear discriminant analysis, we achieved an average
classification accuracy of 82.42% across seven subjects in
distinguishing between low- and high-fatigue states. The
extracted latent components revealed consistent
neurophysiological patterns—particularly in occipital and
sensorimotor alpha activity—corresponding to fatigue
accumulation. Temporal tracking across sessions
confirmed the progressive nature of mental fatigue, even
under artifact-prone, real-world conditions. However,
predicted fatigue scores during VR motor imagery are not
more pronounced than in the Control session. These
findings support the integration of real-time fatigue
monitoring into adaptive BCI-HMD systems, potentially
enhancing their effectiveness and usability in post-stroke
motor neurorehabilitation.
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