
 

Abstract—Prolonged use of brain–computer interfaces (BCIs) 
with virtual reality (VR) via head-mounted displays (HMDs) 
induces mental fatigue, potentially impairing 
neurorehabilitation. This study examines EEG-based fatigue 
markers in healthy participants during extended BCI-HMD 
sessions. Fatigue was classified using N-way Partial Least 
Squares (N-PLS) with linear discriminant analysis, achieving 
82.42% (±7.5) accuracy. N-PLS components revealed spatial–
spectral patterns in occipital and sensorimotor alpha activity. 
Temporal trajectories indicated progressive fatigue 
accumulation during sessions. Results demonstrate the 
feasibility of EEG-based fatigue monitoring for optimizing 
BCI-HMD post-stroke neurorehabilitation. 

I. INTRODUCTION 

Integrating brain–computer interfaces (BCIs) with 
virtual reality (VR) via head-mounted displays (HMDs) 
has a strong potential for post-stroke motor 
neurorehabilitation by enabling motor imagery (MI) 
training in immersive, ecologically valid environments. 
However, mental fatigue poses a major challenge to long-
term BCI-HMD use, degrading MI performance and user 
engagement.  

Mental fatigue is a complex cognitive state marked by 
reduced attention and increased effort during sustained 
tasks. While often assessed subjectively, EEG-based 
biomarkers, such as increased theta and alpha amplitude, 
offer objective indicators of fatigue progression [1]. 
Previous studies have examined these markers [2], [3], but 
little is known about their evolution during extended BCI-
HMD use. 

This study investigates neural markers of mental 
fatigue during long-term BCI-HMD VR sessions in healthy 
participants. Using N-way Partial Least Squares (N-PLS), 
we extracted latent EEG patterns associated with fatigue 
induced by sustained MI. The objective of this work is to 
contribute to the design of adaptive, real-time BCI-HMD 
systems tailored for practical use in post-stroke motor 
neurorehabilitation. 

II. MATERIALS AND METHODS 

Experiment Design 

The study employed a structured experimental design 
to investigate fatigue dynamics in a neurorehabilitation 
setting, particularly when using MI. Participants followed 
pre-session guidelines to minimize baseline fatigue and 
engaged in three sessions: a Mirror box session, a VR 
motor imagery session, and a Control session. Continuous 

EEG recordings captured neural activity using the 
previously developed BCI-HMD system [4], with pre- and 
post-task assessments enabling analysis of sustained 
cognitive load and mental fatigue effects.  

The experiment involved pre- and post-session resting 
state EEG recordings with eyes closed (EC) and eyes open 
(EO), a continuous performance test (CPT), and fatigue 
and cybersickness related questionaries.  

EEG data were captured using the wireless g.Nautilus 
PRO FLEXIBLE system, an FDA-cleared device equipped 
with 32 Ag/AgCl wet EEG electrodes arranged according 
to the international 10-20 system; the HMD utilized was an 
autonomous Oculus Quest 2 (Meta Platforms, Inc.) headset 
and a publicly available software OpenViBE was used to 
interconnect these components. 

EEG data were initially collected from 15 participants 
during the mirror box experiment. Due to dropouts, data 
was collected from 9 participants in the VR session and 10 
in the Control session, with 8 completing all three sessions. 
One subject was excluded due to excessive artifacts, 
resulting in 7 subjects included in the final analysis. 

Both VR and control sessions had 3 blocks of 25 trials. 
During the VR session, participants engaged in a MI 
paradigm, where they mentally imagined gestures without 
any physical movement when prompted by a voice 
command. Each trial consisted of resting state that lasted 
20s and is used to set a threshold for the motor imagery 
phase. Throughout the trial, EEG signals were 
continuously monitored via the BCI-HMD system. When 
the required neural patterns were detected, a virtual arm 
animation was triggered, reaching toward an object, as 
illustrated in Fig. 1. If no activation was detected, the trial 
was automatically terminated after 20 seconds. After the 
motor imagery phase there was a 2-7s pause. Therefore, in 
total the trial lasted approximately 50s and each session 
lasted around one hour.  

  

Figure 1. Patient grasping the cup in virtual reality 
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The control condition featured the same visual stimuli, 
however participants passively observed the scenario, with 
random trials marked as successful to control visual 
engagement. The probability of successful trials in the 
control session was 0.3, 0.4 and 0.35 for each block 
respectively.  

N-way Partial Least Squares Method 

N-PLS is a supervised machine learning method that 
extends traditional PLS by projecting the multi-way input 
𝑿 ∈ ℜ𝑛×𝐼1×𝐼2×… ×𝐼𝑁  and response arrays 𝒀 ∈
ℜ𝑛×𝐼1×𝐼2×… ×𝐼𝑀 onto a lower-dimensional latent space that 
captures the maximum covariance between them [5]. In our 
study, the tensor 𝑿 captures the multi-dimensional EEG 
data across time, frequency, and spatial modes. The 𝒀 
matrix represents the class-membership labels or 
associated class information. For resting state EEG data we 
separated the harmonic and aperiodic components of the 
amplitude spectrum using the IRASA method [6]. 

This was performed on every 2-second segment of EEG 
data using a sliding window of 500 milliseconds.  

After the extraction of a sub-set of k N-PLS latent 

variables 𝑻 ∈ ℜ𝑛×𝑘 the two-class linear discriminant 
analysis was applied to classify low- and high-levels of 
mental fatigue.  

III. RESULTS 

To discriminate between low and high mental fatigue 
for each subject individually, artifact-free resting-state 
eyes-open (EO) EEG data collected before (low-fatigue 
class i.e. 0) and after (high-fatigue class i.e. 1) VR motor 
imagery and control sessions were combined. We applied 
5-fold cross-validation to the combined dataset, 
performing 4-factor N-PLS on each fold. Applying the 
trained model on the test set across folds yielded an average 
classification accuracy of 82.42% (±7.5) across the seven 
subjects. The resulting factors were averaged across folds 
to obtain generalized components that are used for 
prediction of fatigue during the sessions. To avoid 
overfitting, we manually selected the optimal number of 
atoms for each subject based on performance across folds. 

To illustrate the model performance, Fig. 2 shows the 
predicted N-PLS output values and true fatigue labels for 
subject 05 on the fold 1 test set. 

We analyzed the latent variables (components) 
extracted by the N-PLS to gain insight into the underlying 
representations learned by the model. Each factor 
comprises weights distributed across the spatial and 
frequency dimensions, reflecting how the model leveraged 
different brain regions and spectral bands. In Fig. 3, we 
present the frequency weights alongside the corresponding 
spatial topographies for each of three selected N-PLS 
components for subject 05.  

The frequency and spatial profiles of the extracted N-
PLS components reveal distinct neurophysiological 
patterns associated with fatigue levels discrimination. The 
first latent factor exhibits a prominent spectral peak 
centered around 8.7 Hz, with the corresponding 
topographic weights predominantly localized over the 

occipital region. The second factor is characterized by a 
positive peak at 8.3 Hz and a notable negative deflection at 
11.7 Hz. Spatially, this component is primarily distributed 
over the left central region, with the strongest weights near 
the C3 electrode. The third factor shows a mild negative 
dip from 6.8 to 7.8 Hz followed by a peak at 9.7 Hz, with 
the topographic distribution focused over the occipital area 
with a slight lateralization to the right hemisphere.  

To further interpret the neurophysiological basis of the 
N-PLS components, we examined the harmonic spectra of 
real EEG data from Subject 05 shown in Fig. 4 and 5. 
Notably, at the O1 electrode and neighboring parietal and 
occipital EEG channels, the most pronounced difference 
between the pre- and post-resting-state conditions was 
observed at 8.7 Hz, aligning with the peak frequency 
captured in the first N-PLS component. This suggests that 
changes in occipital alpha amplitude, particularly in the left 
hemisphere, contribute significantly to the model's 
discriminative capability. 

 

Figure 2. Comparison of predicted output values and true fatigue 
levels (low and high) for subject 05 on fold 1 test set, obtained using a N-
PLS model trained on combined resting-state eyes-open EEG data 
collected before and after VR motor imagery and Control sessions. 

 

Figure 3. Frequency weights and topographies for the three latent 
variables of the N-PLS models of Fig.1. Each component illustrates the 
spectral and spatial features the model uses to discriminate between low- 
and high-fatigue states for subject 05. 



At C3, located over the left sensorimotor cortex, we 
observed a leftward shift in the alpha peak frequency, 
reflecting a slowing of alpha activity, a phenomenon well-
documented in fatigue-related EEG literature. Specifically, 
frequencies around 8.3 Hz and 11.7 Hz, highlighted in the 
second N-PLS component, correspond to the most 
substantial divergence in the slope of the alpha peak 
between conditions, reinforcing the component’s relevance 
to changes in the sensorimotor cortical areas caused by 
fatigue. 

Lastly, over the right parieto-occipital region—
particularly at electrodes O2, PO8, and P8—spectral 
analysis revealed both an increase in alpha amplitude and 
a leftward shift of the alpha peak, with the pre-resting state 
condition alpha maximum centered at 9.7 Hz. This pattern 
aligns with the third N-PLS component, which captures a 
subtle reduction around 6.8–7.8 Hz and a peak at 9.7 Hz, 
localized over the right occipital scalp. These observations 
collectively provide physiological grounding for the 
extracted N-PLS components and help explain the specific 
spectral and spatial characteristics identified by the model.  

Following the analysis of latent variables and the 
evaluation of classification performance on the test set, the 
trained N-PLS models were applied separately to the 
continuous data from each session. The aim was to 
investigate whether the models could capture the temporal 
evolution of mental fatigue and whether they could be used 
to visualize gradual fatigue accumulation over time. 

Fig. 6 and 7 present the predicted fatigue trajectories 
for subject 05, with the percentage of artifact-free EEG 
electrodes shown above each time point to indicate EEG 
signal quality. Importantly, predictions were performed on 
data containing artifacts, to mimic realistic conditions 
under which this method would be deployed in an online 
BCI-HMD neurorehabilitation setting. In such 
applications, real-time mental fatigue monitoring must 
operate on raw or minimally processed EEG signals, 

 

Figure 4. Harmonic spectra of EEG signal at electrode C3 for subject 

05. 

 

Figure 5. Harmonic spectra of EEG signal at electrodes O1 (left) and 
O2 (right) for subject 05. 

as artifact removal and reduction of EEG electrodes is not 
feasible during live sessions. 

This approach thus evaluates the practical applicability 
of the proposed method in ecologically valid, real-world 
scenarios. For each of the seven subjects, we computed the 
mean N-PLS classification scores from the VR motor 
imagery and Control sessions to illustrate the temporal 
evolution of predicted fatigue levels throughout each 
session. Fig. 8 displays each subject’s predicted mental 
fatigue scores across multiple time points. Each plot shows 
eleven predicted fatigue values per subject: the first 
corresponds to the pre-session rest-state measurement, the 
next nine represent predicted fatigue scores across three 
experimental blocks (three values per block), and the final 
value reflects mental fatigue prediction at the post-session 
resting state condition.  

For all subjects, there is a noticeable increase in 
predicted mental fatigue scores toward the fatigued state by 
the end of the experiment, with occasional temporary 
decreases. This trend is evident across both experimental 
conditions, indicating that the N-PLS model effectively 
captures the gradual increase in mental fatigue over time.  

 

Figure 6. N-PLS-based mental fatigue classification scores across VR 
session segments (pre, blocks 1–3, post) and the corresponding percentage 
of artifact-free EEG electrodes for subject 05.  

 

Figure 7. N-PLS-based mental fatigue classification scores across the 
Control session segments (pre, block 1–3, post) and the corresponding 
percentage of artifact-free EEG electrodes for subject 05.



 

Figure 8. Predicted mental fatigue levels across the VR motor imagery (left) and Control (right) sessions for seven subjects, based on N-PLS classification 
scores. 

IV. CONCLUSION 

This study demonstrates the feasibility of using EEG-
based biomarkers to detect mental fatigue during extended 
sessions involving brain–computer interfaces integrated 
with virtual reality head-mounted displays (BCI-HMD). 
By applying N-way Partial Least Squares (N-PLS) with 
linear discriminant analysis, we achieved an average 
classification accuracy of 82.42% across seven subjects in 
distinguishing between low- and high-fatigue states. The 
extracted latent components revealed consistent 
neurophysiological patterns—particularly in occipital and 
sensorimotor alpha activity—corresponding to fatigue 
accumulation. Temporal tracking across sessions 
confirmed the progressive nature of mental fatigue, even 
under artifact-prone, real-world conditions. However, 
predicted fatigue scores during VR motor imagery are not 
more pronounced than in the Control session. These 
findings support the integration of real-time fatigue 
monitoring into adaptive BCI-HMD systems, potentially 
enhancing their effectiveness and usability in post-stroke 
motor neurorehabilitation. 

ACKNOWLEDGEMENT 

Funded by the EU NextGenerationEU through the 
Recovery and Resilience Plan for Slovakia under the 
project No. 09I03-03-V04-00205 (Z.R.) and project No. 
09I03-03-V04-00443 (R.R.). N.E. received funding from 
the HORIZON-MSCA-2022-DN, 101118964-DONUT 
project.  

REFERENCES 

[1] Y. Tran, A. Craig, R. Craig, R. Chai, and H. Nguyen, “The 

influence of mental fatigue on brain activity: Evidence from a 

systematic review with meta‐analyses,” Psychophysiology, vol. 57, 
no. 5, p. e13554, May 2020, doi:10.1111/psyp.13554. 

[2] L. J. Trejo, K. Kubitz, R. Rosipal, R. L. Kochavi, and L. D. 

Montgomery, “EEG-Based Estimation and Classification of 

Mental Fatigue,” Psychology, vol. 06, no. 05, pp. 572–589, 2015, 
doi: 10.4236/psych.2015.65055. 

[3] H. Yaacob, F. Hossain, S. Shari, S. K. Khare, C. P. Ooi, and U. R. 

Acharya, “Application of Artificial Intelligence Techniques for 
Brain–Computer Interface in Mental Fatigue Detection: A 

Systematic Review (2011–2022),” IEEE Access, vol. 11, pp. 

74736–74758, 2023, doi:10.1109/ACCESS.2023.3296382. 
[4] R. Rosipal, Š. Korečko, Z. Rošt’akova, N. Porubcová, M. Vankó, 

and B. Sobota, “Towards an Ecologically Valid Symbiosis of BCI 

and Head-mounted VR Displays,” in 2022 IEEE 16th International 
Scientific Conference on Informatics (Informatics), Poprad, 

Slovakia:IEEE, Nov. 2022, pp. 251–256. doi: 

10.1109/Informatics57926.2022.10083479. 
[5] R. Bro, “Multiway calibration. Multilinear PLS,” J. Chemom., vol. 

10, no. 1, pp. 47–61, Jan. 1996, 

doi:10.1002/(SICI)1099128X(199601)10:1<47::AIDCEM400>3.0.
CO;2-C. 

[6] H. Wen and Z. Liu, “Separating Fractal and Oscillatory 

Components in the Power Spectrum of Neurophysiological 
Signal,” Brain Topogr., vol. 29, no. 1, pp. 13–26, Jan. 2016, doi: 

10.1007/s10548-015-0448-0. 

 

 


