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Abstract- A major problem in brain-computer interfaces 
(BCIs) relates to the non-stationarity of brain signals. 
Consequently, the performance of a classification algorithm 
trained for an individual subject on a certain day deteriorates 
during the following days. The traditional approach is to 
recalibrate the algorithm every session, limiting the wide use of 
BCIs. Here, we use an autoencoder convolutional neural 
network to identify a low dimensional representation of the EEG 
signals from the first day (or days) and show that this allows for 
stable decoding performance on the following days without 
resorting to recalibration. Furthermore, we demonstrate that 
the residual signals, namely the difference between the original 
and reconstructed EEG, can be used to accurately discriminate 
among different recording sessions. In line with that, the 
reconstructed EEG cannot be used to discriminate among 
recording sessions. This implies that the reconstructed EEG 
reflects an invariant representation of the subject's intent, 
whereas the residual signals reflect a non-stationary component, 
which differs from one session to another. The findings are 
demonstrated through two different datasets. 

Keywords— electroencephalogram, motor-imagery, brain-
computer interface, autoencoders, deep learning, non-stationarity. 

I. INTRODUCTION  

Brain-computer interfaces (BCIs) can serve as a 
communication tool for patients who suffer from a severe loss 
of motor abilities, such as amyotrophic lateral sclerosis 
(ALS) or multiple sclerosis [1,2]. Furthermore, BCIs have 
also been established as a helpful tool for increasing the 
rehabilitation efficiency of motor skills following stroke 
[3,4]. In this paper, we analyze electroencephalogram (EEG) 
recordings collected across multiple daily sessions of a motor 
imagery (MI) BCI task. 

A significant challenge in multi-session BCIs is coping 
with signal non-stationarity [5,6]. A decoding algorithm that 
obtains high performance on one day, will typically preform 
lower on other days. This might be due to changes in the 
underlying neural activity as well as to changes related to the 
EEG headset mounting on different days. The most common 
approach to overcome this non-stationarity is recalibration, 

namely training a new classifier every session. An interesting 
approach to reduce the duration of recalibration, which 
demonstrated good performance in invasive recordings from 
monkeys, is domain adaptation using adversarial models [7]. 
A related method which was applied to non-invasive human 
data is dynamic domain adaptation [8]. Other models based 
on deep learning have also shown promising results using the 
EEGNet and ConvNet networks [9]. In another study, transfer 
learning between sessions using  deep networks was applied 
for addressing cross-session classification difficulties [10]. 
However, these approaches still require some EEG data from 
the same session in order to align with the data from the first 
measurement session (‘session 0’). Here, we propose a new 
method, based on autoencoder neural networks, which does 
not require any recalibration data from the new session. 

Autoencoders (AEs) are stochastic neural networks that 
attempt to compress a high-dimensional input and then 
reconstruct it. Specifically, given an input !, the network tries 
to learn weights such that the output !"  will minimize the 
mean squared error (MSE) loss: 

ℒ = 1
& ()!* − !"*,-

.

*/0
 

AEs have been used for denoising medical images [11], 
ECG signals [12], and EEG signals [13]. The underlying 
premise is that random noise across different samples cannot 
be reconstructed, and thus the learned compressed 
representation would denoise the signal. A significant 
advantage of this approach is that it involves purely 
unsupervised learning and does not require any data labeling. 

II. METHODS 

A. Data 
We applied our approach to two different datasets. The 

first dataset was collected at the Slovak Academy of 
Sciences, Bratislava, and included a single male subject 
(subject 201; 61 years old), who suffers from right-hand 
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hemiplegia, caused by an ischemic stroke. The stroke 
occurred 4 years before the study. 

The experimental protocol involved a MI task with two 
classes: right-hand imagery vs. idle state. The subject 
performed the experiment for a total of 134 sessions over a 
period of 9 months. Each session consisted of 10 trials with 
the following structure. The subject hears the command 
'Relax’ and is expected to relax for 21 seconds with eyes 
closed. After 21 seconds, the subject hears the command 
'Move'. He is instructed to start his MI process of the right 
arm. The subsequent trial starts 7.5 seconds after the end of 
the MI part. We extracted 6 seconds segments of the EEG 
recording before the 'Move' command and labeled them as 
'Idle', and 6 seconds segments after the 'Move' command and 
labeled them as 'Right'. 

The EEG recording was performed using the g.tec 
USBamp headset with gel-based electrodes over the 
following 11 locations FC3, C1, C3, C5, O1, FC4, C2, C4, 
C6, and CP4 according to the international 10-20 system. 
Data were collected with a sampling rate of 512 Hz and were 
offline resampled to 128 Hz, with an anti-aliasing filter 
applied. Data were also filtered using a band-pass filter in the 
range 0.1–200 Hz, and a notch filter at 50 Hz. 

The second dataset was an open access dataset at IEEE 
Data port [14] and included 20 subjects (11 males, mean age 
23.2 ± 1.47  years, all right-handed). The experimental 
protocol involved an MI task with four classes (right hand, 
left hand, both feet, and idle). The subjects participated in 7 
sessions within two weeks, where each session lasted around 
40 minutes and consisted of 6 blocks. Each block consisted 
of 40 trials (10 per class) presented in random order. Each 
trial had the following structure. Pre cue arrow indicated the 
next trial for 1.5 seconds followed by a fixation cross for 1 
second. Then, an arrow indicated to start MI for 5 seconds, 
followed by 3 seconds of rest. The following analysis was 
performed with only two classes (left hand and idle) in order 
to have similar data to subject 201. 

The EEG recording was performed using a 65-channel 
Synamp2 system (Neuroscan, Inc.) with a sampling rate of 
500 Hz. Twenty-six EEG electrodes were positioned 
according to the international 10-20 system. 

B. Preprocessing 
All EEG trials were segmented into periods of 6 seconds 

following the cue to start MI. Data were bandpass filtered 
between 4-40 Hz. Trials with amplitude over 250 µV were 
removed from the dataset. Sessions with less than 10 trials 
were removed completely. 

C. Classifier 
To decode EEG signals, we used filter bank common 

spatial patterns (FBCSP) [15] and a support vector machine 
classifier (SVM). The FBCSP method first filters the EEG 
signals within several frequency bands to correctly identify 
the subject’s optimal frequency band. We used band-pass 
filters in the 4-40 Hz range in steps of 4 Hz (4-8 Hz, 8-12 Hz, 
etc...). After filtering, we applied common spatial patterns 
(CSP) to each filtered signal. The CSP method was used to 
identify linear combinations of channels that exhibit high 
variability under one condition and low variability under the 
other condition [16]. From each CSP signal, we extract a 
feature that corresponds to the total band power. 
Subsequently, we apply the mutual-information-based best 
individual feature (MIBIF) algorithm, a common feature 
selection algorithm [17,18]. In this algorithm, the mutual 
information of each feature with the label is computed. The 
features are then ranked in descending order, and the k first 
features are selected (we took k to be the number of EEG 
channels). Lastly, we use an SVM classifier [19] to predict 
the trial label according to the selected features.  

D. Within-Session Classification 
For each session, the preprocessed EEG trials were 

divided into 5 folds (80% train, 20% test). Each fold was 
fitted with an FBCSP for 80% of the train data and tested on 
the 20% test data.  Performance was quantified by the mean 
accuracy score over folds. 

E. Cross-Session Classification 
The FBCSP model was fitted using all trials in the first 

session (session zero). Then, for each subsequent session, 
performance was quantified using the accuracy of this 
classifier across all trials in that session.  

F. AE + Cross-Session Classification 
An AE was fitted to reconstruct the EEG signals from 

session zero. The AE architecture was 3 layers of 1D 
convolution (number of filters per layer – [8, 16, 32]) for the 
encoder, and 3 layers of 1D transposed convolution (number 
of filters per layer – [32,16,8]) for the decoder. The learning 
rate was 0.001 while using Adam optimizer [20] for 250 
epochs. The AE loss was MSE between input and output. 

The FBCSP model was then fitted using the reconstructed 
EEG of all trials in session zero. For each subsequent session, 
data were reconstructed by the AE that was trained on session 
zero, and the accuracy of the FBCSP model which was 
trained on session zero was computed. Thus, this model did 
not require any data from the test sessions. 

The classification workflow is illustrated in Fig. 1. 

 

Figure 1: Workflow chart of our proposed algorithm. 
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G. Multi-Session Training 
We applied the same analysis as described for session 

zero, but gradually combined more sessions together and 
used them as the training set for the cross-session and the AE 
cross-session conditions. We then tested the model's accuracy 
score over the rest of the sessions. The benchmark for the 
within-session score was 5-fold cross-validation over all the 
sessions that were not included in the training set (namely, 
the test set). 

H. Classification of the data origin session 
To gain insight into the nature of the non-stationarity in 

the EEG signals, we trained a classifier to identify the session 
from which the data originated. Specifically, we labeled each 
trial with the session number, regardless of the MI task label. 
We then used CSP features and a linear discriminant analysis 
(LDA) with 5 folds CV to classify from which session the 
trial data originated. We applied the above procedure to the 
original EEG signals, the reconstructed EEG signals after the 
AE transformation, and the residuals of the AE reconstruction 
( ! − !", . This allowed us to assess whether the signal 
components that the AE removed indeed contain session-
specific information, namely, whether they reflect the non-
stationarity of the EEG. 

All analysis codes were implemented in Python 3.7. The 
AE model was implemented using Pytorch and the FBCSP 
was implemented using the FBCSP toolbox 
(https://fbcsptoolbox.github.io/). The codes are available at: 
https://github.com/bci4cpl/Non-Staionarity-Autoencoder-
denoising. 

III. RESULTS 

Figure 2 presents the results from the analyses of subject 
201, the stroke patient. The mean accuracy score of the cross-
session classifier, across all 134 sessions, was 61.6%, 
whereas the mean accuracy of the AE + cross-session model 
was 68.5%. The accuracy of the within-session model was at 
a chance level, due to the low amount of data per session. We 

address this problem by testing the within-session over the 
entire test set.  

As evident in Fig. 2, although there is an improvement in 
the cross-session score as more session data are added to the 
training set, the AE cross-session model constantly 
outperforms the simple cross-session model. Additionally, 
the AE cross-session method achieved comparable 
performance to the within-session cross-validation model, 
despite using a substantially smaller amount of training data. 

We next examined the ability to identify the session from 
which the data originated. When using the original signals, 
the accuracy of the trained classifier across the 134 sessions 
was 67.6%. The accuracy when using the reconstructed de-
noised signals was 15.7%, whereas the accuracy when using 
the residual signals was 72.7%. 

Subsequently, we applied the analyses to the IEEE dataset 
(Fig. 3). The presented performance reflects the mean across 
subjects, where only subjects with the entire 7-day recording 
after trial rejection were analyzed (N=17). The mean over 7 
days within-session accuracy score was 71.3%, with 0.4% 
standard error. For the cross-session, the accuracy score was 
55.3% with 0.29% standard error, whereas the AE cross-
session score was 59.6% with 0.35% standard error. Some 
subjects had low accuracy scores when using the within-
session method, and neither of the cross-session methods had 
good performance in these cases. We checked the mean 
across subjects only in cases where the mean within-session 
score was above 75%. The improvement of the AE cross-
session model compared to the simple cross-session model 
was superior – 67.4% accuracy for the AE cross-session 
model, against 57.1% using the simple cross-session model. 

Classification of the signal origin session was performed 
per subject, and we report the mean across subjects. The mean 
accuracy for using the original signals as input was 75.6% 

Figure 2: Analysis of longitudinal data from a stroke patient.  A) Mean accuracy of each model. The cross-session (red) and AE + cross-sessions (green) 
models were trained on an increasing size of the training set. The within-session benchmark (blue) is the score of the cross validation on the test set (no 
inference on new sessions). The shaded area represents the standard error of the accuracy across sessions. B) Mean accuracy of origin session 
classification using the original signals, reconstructed de-noised, and residuals signals. 
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with 2.5% standard error. When using the de-noised 
reconstructed signals, accuracy dropped to 56.5%, with 2.6% 
standard error, whereas when using the residuals of the AE, 
accuracy was 73%, with 2.7% standard error. Student t-test 
was performed to assess whether the difference between the 
conditions is significant. No significant difference was found 
between the original and residual signal conditions 
(7 =  0.503). However, a significant difference was found 
between the original and reconstructed signals  
( 7 <  0.0001 ), and between the residuals and the 
reconstructed signals (7 <  0.001). 

IV. DISCUSSION 

We presented a novel approach for overcoming signal 
non-stationarity in EEG-based MI BCIs. Our method is based 
on a convolutional AE network, which finds a low-
dimensional compressed representation of the EEG signals 
and eliminates components related to cross-session 
variability. The main motivation behind the proposed 
approach is that it relies on a purely unsupervised learning 
approach to denoise the non-stationary component. 
Furthermore, it does not require any additional data collection 
from the target session. Our results suggest that the AE 
denoising method can help create stable BCIs, which may 
have a wide range of applications.  

Figure 3: Analysis of the IEEE dataset.  A)  Mean accuracy over subjects (N=17) of within-session (blue), cross-session (red), and AE + cross-session 
models (green).  B) Mean accuracy and standard error of origin session classification using the original signals, reconstructed de-noised, and residuals 
signals.   ( ∗∗∗ < < 0.001,.  C) Mean accuracy over subjects with mean within-session accuracy > 75% (N=8) of within-session, cross-session, and AE 
+ cross-session models.  D) Accuracy of the subject with highest within-session mean accuracy of within-session, cross-session, and AE + cross-
session models. 
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For the stroke patient data, which contained over 130 
sessions, the results remained constantly better than the naïve 
use of the same classification model trained with the data of 
past sessions. Furthermore, the findings are consistent across 
a different dataset with 20 subjects. This is an improvement 
over most current methods for stable BCIs, which require 
some data from the test session. An advantage of the AE 
approach is that it is purely unsupervised and only relies on 
the assumption that the non-stationary signal cannot be 
learned by the AE due to the randomness of the noise 
components among sessions. We also found that when the 
within-session classification obtains better performance, our 
proposed model has “more room” for improvement compared 
to simple cross-session classification.   

Lastly, the fact that the reconstructed signal performs 
poorly in classifying the session from which the data 
originated, compared to the original and the residuals signals, 
suggests that the residuals removed from the signals contain 
session-specific information. Analyzing these signals can 
provide further insights into the sources of non-stationarity. 
Future work can look for AE architectures that perform better 
than the simple AE we used. Another future direction would 
be to examine the application of the approach to other BCI 
paradigms, such as a P300 BCI or emotion recognition. 

 

REFERENCES 
[1] J. J. Daly and J. R. Wolpaw, “Brain–computer interfaces in 

neurological rehabilitation,” The Lancet Neurology, vol. 7, no. 11, pp. 
1032–1043, Nov. 2008. 

[2] J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller and T. 
Vaughan, "Brain–computer interfaces for communication and control", 
2022. 

[3] A. Zimmermann-Schlatter, C. Schuster, M. A. Puhan, E. Siekierka, and 
J. Steurer, “Efficacy of motor imagery in post-stroke rehabilitation: a 
systematic review,” Journal of NeuroEngineering and Rehabilitation, 
vol. 5, no. 1, Mar. 2008. 

[4] S. de Vries and T. Mulder, “Motor imagery and stroke rehabilitation: a 
critical discussion,” Journal of Rehabilitation Medicine, vol. 39, no. 1, 
pp. 5–13, 2007. 

[5] P. Shenoy, M. Krauledat, B. Blankertz, R. P. N. Rao, and K.-R. Müller, 
“Towards adaptive classification for BCI,” Journal of Neural 
Engineering, vol. 3, no. 1, pp. R13–R23, Mar. 2006. 

[6] A. Arieli, A. Sterkin, A. Grinvald, and A. Aertsen, “Dynamics of 
Ongoing Activity: Explanation of the Large Variability in Evoked 
Cortical Responses,” Science, vol. 273, no. 5283, pp. 1868–1871, Sep. 
1996. 

[7] A. Farshchian, J. A. Gallego, J. P. Cohen, Y. Bengio, L. E. Miller, and 
S. A. Solla, “Adversarial Domain Adaptation for Stable Brain-Machine 

Interfaces,” arXiv:1810.00045 [cs, q-bio, stat], Jan. 2019, Accessed: 
Sep. 22, 2022. 

[8] J. Ma, B. Yang, W. Qiu, Y. Li, S. Gao, and X. Xia, “A large EEG 
dataset for studying cross-session variability in motor imagery brain-
computer interface,” Scientific Data, vol. 9, no. 1, p. 531, Sep. 2022. 

[9] Z. Li et al., "Dynamic Domain Adaptation for Class-Aware Cross-
Subject and Cross-Session EEG Emotion Recognition," in IEEE 
Journal of Biomedical and Health Informatics, 2022. 

[10] D. Wu, Y. Xu, and B.-L. Lu, “Transfer Learning for EEG-Based Brain–
Computer Interfaces: A Review of Progress Made Since 2016,” IEEE 
Transactions on Cognitive and Developmental Systems, vol. 14, no. 1, 
pp. 4–19, Mar. 2022. 

[11] L. Gondara, “Medical Image Denoising Using Convolutional 
Denoising Autoencoders,” IEEE Xplore, 2016. 

[12] H.-T. Chiang, Y.-Y. Hsieh, S.-W. Fu, K.-H. Hung, Y. Tsao, and S.-Y. 
Chien, “Noise Reduction in ECG Signals Using Fully Convolutional 
Denoising Autoencoders,” IEEE Access, vol. 7, pp. 60806–60813, 
2019. 

[13] N. M. N. Leite, E. T. Pereira, E. C. Gurjão, and L. R. Veloso, “Deep 
Convolutional Autoencoder for EEG Noise Filtering,” IEEE Xplore, 
Dec. 01, 2018.  

[14] Q. Zhou, “EEG dataset of 7-day Motor Imagery BCI,” ieee-
dataport.org, Nov. 2020, Accessed: Sep. 22, 2022. 

[15] Kai Keng Ang, Zheng Yang Chin, Haihong Zhang and Cuntai Guan, 
"Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer 
Interface," 2008 IEEE International Joint Conference on Neural 
Networks (IEEE World Congress on Computational Intelligence), 
2008. 

[16] C. Guger, H. Ramoser, and G. Pfurtscheller, “Real-time EEG analysis 
with subject-specific spatial patterns for a brain-computer interface 
(BCI),” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 
4, pp. 447–456, 2000. 

[17] K. K. Ang and C. Quek, “Rough set-based neuro-fuzzy system,” IEEE 
Xplore, Jul. 01, 2006. 

[18] A. K. Jain, P. W. Duin, and Jianchang Mao, “Statistical pattern 
recognition: a review,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 22, no. 1, pp. 4–37, 2000. 

[19] W. S. Noble, “What is a support vector machine?,” Nature 
Biotechnology, vol. 24, no. 12, pp. 1565–1567, Dec. 2006. 

[20] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic 
Optimization,” arXiv.org, 2014. 

 

 

 

 

 

 

 

 

 

 

O. Almagor et al. · Using Autoencoders to Denoise Cross-Session Non-Stationarity in EEG-Based Motor-Imagery Brain-...

– 28 –


	Page 1

