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Abstract

Non-stationarity in EEG signals poses significant challenges for the performance and implementation of brain–computer 
interfaces (BCIs). In this study, we propose a novel method for cross-session BCI tasks that employs a supervised 
autoencoder to reduce session-specific information while preserving task-related signals. Our approach compresses high-
dimensional EEG inputs and reconstructs them, thereby mitigating non-stationary variability in the data. In addition to 
unsupervised minimization of the reconstruction error, the objective function of the network includes two supervised terms to 
ensure that the latent representations exclude session identity information and are optimized for subsequent classification. 
Evaluation across three different motor imagery datasets demonstrates that our approach effectively addresses domain 
adaptation challenges, outperforming both naïve cross-session and within-session methods. Our method eliminates the need 
for data from new sessions, making it fully unsupervised concerning new session data and reducing the necessity for 
recalibration with each session. Furthermore, the reduction of session-specific information in the reconstructed signals 
indicates that our approach effectively denoises non-stationary signals, thereby enhancing the accuracy of BCI models. Future 
applications could extend this model to a broader range of BCI tasks and explore the residual signals to investigate sources of 
non-stationary brain components and other cognitive processes.

Keywords: Motor-Imagery BCI, EEG, Non-Stationarity, Autoencoder, Denoising

1. Introduction

Brain-computer interfaces (BCIs) can serve as a 
communication tool for patients who suffer from a severe 
loss of motor abilities, such as amyotrophic lateral sclerosis 
or multiple sclerosis [1,2]. Furthermore, BCIs have also been 
established as a helpful tool for increasing the rehabilitation 
efficiency of motor skills following a stroke [3-5]. In this 
paper, we analyze electroencephalogram (EEG) recordings 
collected across multiple daily sessions of a motor imagery 
(MI) BCI task.

In the context of multi-session BCI studies, addressing 
signal non-stationarity poses a significant challenge [6,7]. 
Decoding algorithms that achieve high performance on a 
given day tend to underperform during subsequent sessions, 
owing to fluctuations in underlying neural activity and 

inconsistencies in EEG headset placement. Several studies 
showed that neural representation changes over time, without 
changes in the stimuli. These changes can vary in time spans 
of between minutes to weeks, and occur on several brain 
networks [8-12]. In this regard, evaluating the performance 
of a decoding model using different measures can aid in 
assessing its effectiveness. The within-session score refers to 
the performance of a model on a test dataset obtained from 
the same recording session, without altering the headset, and 
with minimal time lapse between training and test data 
acquisition. On the other hand, the cross-session score 
denotes the model's performance when the training and test 
sets are derived from distinct sessions, potentially with 
significant temporal gaps (e.g., different days).

To address EEG signal non-stationarity, recalibration is 
commonly used, involving training a new classifier for each 
session, which necessitates additional data collection each 
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time the BCI is used. This time-consuming recalibration is a 
major obstacle in the wide adoption of this technology. One 
proposed method to overcome the multi-session non-
stationary challenge without training a model from start each 
day is co-adaptive training [13,14]. In the co-adaptive 
method, the classifier in constantly updated based on the 
brain activity during the current session.  Another promising 
approach to reducing recalibration duration is domain 
adaptation, which involves the adaptation of an algorithm 
trained in one or more "source domains" to effectively work 
in a different, yet related, "target domain". An example for 
this approach is shown with adversarial deep learning 
models, which have demonstrated good performance in 
invasive recordings from monkeys [15]. The aim of this 
method, along with other domain adaptation techniques, is to 
map the feature domain of subsequent (“target”) sessions to 
better align with the feature domain of the training session on 
which the model was originally trained (“source”), thus 
improving the cross-session accuracy of the model. Dynamic 
domain adaptation is another related method, which was 
applied to non-invasive human data [16]. Deep learning 
models such as EEGNet and ConvNet networks have also 
shown promising results in the cross-session performance for 
multi-session BCI tasks [17]. Transfer learning between 
sessions utilizing deep networks has been applied to address 
this type of classification difficulty [18], but still requires 
some EEG data from the same session to align with data 
from the first measurement session (“session 0”). Here, we 
propose a novel deep neural network architecture that 
obviates the need for any recalibration data from the new 
session. It is based on an autoencoder neural network, 
together with a supervised component. 

Autoencoders (AEs) are neural networks that aim to 
compress high-dimensional inputs and then reconstruct them. 
The network endeavors to learn weights that minimize the 
mean squared error (MSE) between the output x̂ and the given 
input x. AEs have been applied to denoise various medical 
signals, including electrocardiogram (ECG) signals [19], EEG 
signals [20], and medical images [21]. The fundamental 
concept is that random noise present in different samples 
cannot be reconstructed, and therefore, the compressed 
representation learned by the network will capture the 
regularities in the data and remove the noise.

We previously utilized a basic AE network to overcome 
the non-stationarity problem in MI-BCI [22]. In the method 
proposed in the mentioned paper, the preprocessed EEG 
signals were replaced with the reconstructed signals as the 
input to a classifier. This approach improved the accuracy of 
the BCI task in cross-session tests, indicating that the 
reconstructed signals contained task-related information and 
less non-task-related information. Furthermore, the study 
revealed that the residuals, defined as the difference between 
the original and reconstructed signals, retained a similar 
amount of session-specific information as the original signals, 

whereas the reconstructed signals showed a significant 
reduction in session-specific information.

However, this approach did not take into account any 
information regarding the task-related labels and session-
related information in the data. Thus, a major question is how 
to explicitly incorporate this information and construct a 
compressed representation that better maintains task-related 
information while removing session-related information. 
Here, to address these issues, we added two additional 
components into the loss function: one based on the session 
label (identifying the session from which the signal was 
recorded) and another based on the MI task label, to place 
constraints on the Decoder and Encoder, respectively. By that, 
our model is working as a supervised representation learning 
model, which has several examples in other fields, mainly 
computer vision [23,24]. A similar method for semi-
supervised AEs was applied to ECG and EEG data with the 
classification task only on the latent space and showed an 
improvement in the reconstruction for task classification [25]. 
Since AEs are traditionally self-supervised models, we refer 
to our model as a supervised autoencoder (SAE) due to the 
inclusion of session and task labels in the training process. In 
contrast, the basic unsupervised autoencoder will be referred 
to as uAE.

It is important to emphasize that our main goal is to 
address the challenges of brain-related non-stationarity in 
EEG signals, rather than artifact removal. Artifacts resulting 
from eye movements and muscle activity, are generally 
consistent across sessions and unlikely to contain session-
specific information. In addition, these artifacts are transient, 
whereas here we focus on removal of continuous components 
by projecting the data into a lower dimensional space.

The paper provides an overview of the various datasets 
employed, as well as the EEG pre-processing, the BCI 
classification model, and the metrics employed to evaluate 
each approach. The network architecture is also discussed in 
detail. The findings for each dataset are presented, and 
recommendations for model use and future applications are 
suggested.

2. Methods

Subsection 2.1 describes the datasets used in this study, 
while subsection 2.2 outlines the data preprocessing 
procedures. The classifier and model architecture are 
discussed in subsections 2.3 and 2.4, respectively, followed by 
a detailed explanation of the training procedure in subsection 
2.5. Finally, subsections 2.6 through 2.9 present the evaluation 
of our proposed method using various metrics. 

2.1 Data

Our approach was implemented on three distinct datasets. 
The first dataset, obtained from the Slovak Academy of 
Sciences (Bratislava), consisted of data collected from a 
single male participant (subject 201; aged 61) who  
experienced right-hand hemiplegia resulting from an 
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ischemic stroke that had occurred four years prior to the 
study.
In the experimental procedure, a MI task with two distinct 
categories, right-hand imagery versus idle state, was 
conducted. The subject participated in a total of 134 sessions 
over a span of 9 months. Each session comprised 10 trials or 
more following a specific pattern. Initially, the subject heard 
the command “Relax” and was instructed to remain in a 
relaxed state with eyes closed for 21 seconds. Following this, 
he heard the command “Move” and was prompted to initiate 
the MI process of the right arm while keeping his eyes 
closed. The subsequent trial commenced 7.5 seconds after 
the conclusion of the MI phase. EEG recordings were 
captured using a g.tec USBamp headset with gel-based 
electrodes placed over the following specific locations: FC3, 
C1, C3, C5, O1, FC4, C2, C4, C6, and CP4, in accordance 
with the international 10–20 system. The collected data were 
sampled at a rate of 512 Hz and later resampled offline to 
128 Hz with an anti-aliasing filter applied and re-referenced 
to the linked ear. We extracted 6-second segments of the 
EEG recording before the “Move” command and labeled 
them as “Idle”, and 6-second segments after the “Move” 
command, designating them as “Right”.

The second dataset, which is publicly available on IEEE 
DataPort [26], comprised 20 participants (11 males), all of 
whom were right handed and whose average age was 
23.2±1.47 years. The experimental procedure for this dataset 
involved a MI task with four distinct categories, namely, 
right hand, left hand, both feet, and idle. The participants 
completed 7 sessions over two weeks, with each session 
lasting approximately 40 minutes and consisting of 6 blocks. 
Each block included 40 trials, with 10 trials for each category 
presented randomly. The structure of each trial involved a 
pre-cue arrow indicating the next trial for 1.5 seconds, 
followed by a fixation cross for 1 second. An arrow was then 
displayed for 5 seconds, prompting the participants to engage 
in MI, followed by 3 seconds of rest. The EEG recordings 
were acquired using a 65-channel Synamp2 system 
(Neuroscan, Inc.) at a sampling rate of 500 Hz. The 26 EEG 
electrodes were placed based on the international 10–20 
system.

The third dataset, which is accessible in an article in 
Scientific Data [27], involved 25 participants (12 females) 
between 20 and 24 years of age, none of whom had any prior 
experience with BCI. The task assigned to the participants 
was a MI task, where each trial commenced with a fixation 
cross, followed by a left-hand or right-hand movement 
prompt displayed on the monitor, indicating the next 
movement to imagine. The total duration of each trial was 
7.5 seconds, and each session included 100 trials. Each 
participant completed the experiment 5 times on 5 different 
days, with a 2–3-day interval between each session. The 
EEG headset utilized in this study was a solid electrode cap 
with Ag/AgCl and 32 electrodes from Wuhan Greentech 
Technology Co., LTD, with a sampling rate of 250 Hz.

2.2 Pre-processing

All EEG trials were segmented into periods of 6 seconds 
following the cue to start MI. Data were bandpass filtered 
between 1–40 Hz. Trials with an amplitude over 250 µV 
were removed from the dataset. Sessions with less than 10 
trials were removed completely. 

2.3 Classifier

A commonly used approach for motor imagery-based 
brain-computer interface (MI-BCI) classification from EEG 
signals involves feature extraction using common spatial 
patterns (CSP) [28] and classification through linear 
discriminant analysis (LDA) [29, 30]. We utilized CSP [28] 
to identify linear combinations of EEG channels that 
maximized variance (total power) for one condition while 
minimizing it for the other. The total power from each CSP 
component was then extracted and used as input for a multi-
class LDA classifier [31].

During the training phase of our model, the network 
architecture included a component specifically trained to 
classify the EEG signals based on task labels. However, in 
the inference phase, we opted to use the CSP-LDA method 
for classification instead of directly utilizing the neural 
network. We found that the CSP-LDA method demonstrated 
superior performance on the data, likely due to the limited 
amount of data per session and the risk of overfitting with the 
neural network. Furthermore, this approach facilitates easier 
comparison with other studies on motor-imagery BCIs, 
where CSP-LDA is commonly employed.

2.4 Trainable Auto-Encoder Architecture

The proposed trainable architecture considers two training 
phases: autoencoder training and classifier training.

Autoencoder Training: The architecture for the initial 
training phase, as shown in Fig. 1a, utilizes an AE consisting 
of three layers of 1D convolution for the encoder (with [8, 
16, 32] filters per layer) and three layers of 1D transposed 
convolution for the decoder (with [32, 16, 8] filters per 
layer). The model was trained with a learning rate of 0.001 
using the Adam optimizer [32] over 250 epochs, with Leaky 
ReLU [33] as the activation function. 

This phase consisted of three primary tasks: MI task 
classification, EEG data reconstruction, and origin session 
classification.

• For MI task classification, we applied a fully 
connected single-layer readout network from the 
latent layer, representing a compressed feature 
space of the EEG signals. A Softmax activation 
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function and cross-entropy loss were used with the 
MI task labels for each signal.

• For EEG data reconstruction, the mean squared 
error (MSE) loss was computed between the 
autoencoder's input and output.

• For origin session classification, a separate encoder 
with the same architecture as the AE encoder was 
applied to the AE residuals (x - x̂). A fully 
connected layer was then applied to the latent space 
of these residuals to classify the origin session.

Both fully connected layers included a dropout layer with 
a 50% dropout rate to prevent overfitting. By incorporating 
these losses into the standard AE framework, the compressed 
representation of the EEG signals retained more task-relevant 
information while reducing session-specific information, 
improving the network’s ability to classify the origin session 
of the signals.

The AE loss, ℒ, consisted of three terms:

(1) ℒ𝑀𝑆𝐸 =
1
𝑁

𝑁

𝑖=1
(𝑥𝑖 ― 𝑥𝑖)2

(2) ℒ𝑡𝑎𝑠𝑘 =  ―
1
𝑁

𝑁

𝑖=1

𝑀

𝑗=0
𝑦𝑡𝑎𝑠𝑘

𝑖𝑗 𝑙𝑜𝑔 (𝑝𝑡𝑎𝑠𝑘
𝑖𝑗 )

(3) ℒ𝑠𝑒𝑠𝑠𝑖𝑜𝑛 =  ―
1
𝑁

𝑁

𝑖=1

𝑀

𝑗=0
𝑦𝑠𝑒𝑠𝑠𝑖𝑜𝑛

𝑖𝑗 log (𝑝𝑠𝑒𝑠𝑠𝑖𝑜𝑛
𝑖𝑗 )

ℒ = ℒ𝑀𝑆𝐸 + ℒ𝑡𝑎𝑠𝑘 + ℒ𝑠𝑒𝑠𝑠𝑖𝑜𝑛

Where 𝑁 is the number of samples in the batch, 𝑀 is the 
number of motor imagery classes (2 or 4), 𝑥 is the AE input 
(EEG signals) and 𝑥 is the model output, 𝑦 is the relevant 
label (MI task in the task loss, and session number in the 
session loss), and 𝑝 is the probability for the class returned 
by the fully connected network.

Classifier Training: The subsequent training phase 
architecture, illustrated in Fig.1b, involves transforming the 
reconstructed EEG signals into a set of features using CSP. 
These features are then classified using an LDA classifier. 
During this phase, the AE weights are fixed, and only CSP 
and LDA components are trained, as discussed in subsection 
2.3. This approach ensures that the classifier can effectively 
distinguish between the different MI tasks based on the 
features extracted by the AE and CSP.

2.5 Multi-Session Training

 To measure the impact of incorporating multi-session data 
collected from the same subject, we progressively 
incorporated more sessions into the training set. The test set 
consisted of the remaining sessions not used in the training set. 
For example, if a subject had 7 sessions in total, we began by 
using session 0 as the training set and sessions 1–6 as the test 
set. In the subsequent iteration, we employed sessions 0–1 as 
the training set and sessions 2–6 as the test set, and so forth. 
The sequence of sessions was randomized for each realization.

2.6 Within-Session Classification

To evaluate the performance of the models on each 
training set, we divided the pre-processed EEG trials into 
five folds. Each fold was then used to fit a CSP-LDA 
classifier on 80% of the training data and tested on the 
remaining 20% of test data. The mean accuracy score over 
the folds was then calculated to quantify the performance.

2.7 Cross-Session Classification

The CSP-LDA model was trained on all trials in the 
training set. Next, the accuracy of this classifier across all 
trials in each subsequent session in the test set was used to 
assess performance. The average accuracy over the sessions 
in the test set was used to measure the performance of the 
classifier between sessions. This result was considered the 
naïve between-session performance.

2.8 sAE and Cross-Session Classification

The CSP-LDA model was fitted using the reconstructed 
EEG of all trials in the training set. For each subsequent 
session in the test set, data were reconstructed by the AE that 
was fitted to the training set, and the accuracy of the CSP-
LDA model which was trained on the training set 
reconstructed signals was computed. Thus, this model did not 
require any data from the test sessions for domain adaptation.

2.9 Classification of the Data Origin Session

To gain a better understanding of the non-stationarity in 
the EEG signals, a classifier was trained to identify the session 
from which the data originated. Each trial was labeled with the 
session number, independent of the MI task label, and the CSP 
features were extracted. An LDA classifier with 5-fold cross 
validation was then applied to classify the origin session of the 
trial data. This procedure was applied to the preprocessed EEG 
signals, the reconstructed EEG signals after the AE 
transformation, and the residuals of the AE reconstruction (
𝑥 ― 𝑥), allowing for assessment of whether the signal 
components removed by the AE indeed contained session-
specific information, and whether they reflected the non-
stationarity of the EEG.

The division between the training and test sets for each 
method are summarized in Table 1.
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All analysis codes were implemented in Python 3.7. The 
AE model was implemented using Pytorch. The codes are 
available at: https://github.com/bci4cpl/NAWD.

3. Results

Our study tackled the issue of signal non-stationarity, a 
major obstacle in multi-session BCI studies. We examined 
three separate MI-EEG datasets, each involving unique 
participants and distinct experimental methodologies. Our 
approach incorporated a supervised AE model to enhance the 
decoding algorithm's performance across multiple sessions. In 
this section, we delve into a comprehensive performance 
analysis of our model, both within individual sessions and 
across multiple ones. The analysis showcases the model's 
adeptness at managing session-related variations in neural 
activity.

As described in the Methods section, the performance of 
the model is evaluated using cross-session classification 
(Section 2.8). The model is then compared to within-session 
classification and cross-session classification of the raw EEG 
(Sections 2.6 and 2.7). It is also compared to the cross-session 
performance following the application of a simple self-
supervised AE.

3.1 Stroke Patient Dataset

Figure 2 illustrates the accuracy performance of the 
different methods as a function of the number of sessions 
included in the training set. As expected, all methods 
demonstrated improvement as more sessions were added to 
the training set; however, the naive cross-session method 
exhibited slower improvement and required more data to reach 
the saturation point. The results show that the naive cross-
session method consistently achieved an accuracy of 
approximately 66% with a training set of 30 sessions or more, 
whereas our proposed method incorporating the sAE achieved 
an accuracy of around 70% with a training set of 20 sessions 
or more. This significant improvement of approximately 4% 
was observed consistently across increasing training set sizes, 
and highlights the superiority of the sAE over the naive cross-
session model in reaching a higher saturation point with less 
data. Furthermore, the AE model achieved better performance 
compared to the within session method, which serves as a 
benchmark for the absence of non-stationary signal noise 
between the test and training sets. Interestingly, utilizing only 
the MSE loss in the AE model yielded results similar to those 
obtained with the sAE, with no significant improvement 
observed. The classification accuracy for identifying the 
origin session showed a significant improvement of 
approximately 9% when using residuals from the AE and sAE 
models, achieving an accuracy of 70%, compared to the 
original preprocessed EEG signals, which achieved an 
accuracy score of 61%. However, when using the 
reconstructed signals, the accuracy score was considerably 
lower at approximately 25%. It is worth noting that the chance 
level for the task was 0.7%. In terms of session classification, 
both the sAE and AE models performed similarly for both the 
reconstructed and residual outputs.

3.2 IEEE Dataset

We first evaluated the classification accuracy with respect to 
the number of training sessions. For the IEEE dataset (4 MI 
classes), the sAE method substantially outperformed the naive 
cross-session method (Fig.3a), achieving an accuracy 
improvement of approximately 10%. Interestingly, our 
method even outperformed the within-session accuracy by 
7%. The improvement was even greater when we removed 
subjects who performed poorly in the MI task to begin with 
(Fig. 3b.). Specifically, we excluded from the analysis 11 
subjects whose mean accuracy for the within-session was 
below 30% (leaving N=9 subjects for analysis). The sAE 
method achieved better results than the MSE AE, with an 
improvement of approximately 2.5% (Fig. 3b). However, this 
improvement was only observed when removing the low-
performing subjects. To further asses the effectiveness of our 
proposed method, we compared performance across subjects 
with the highest and the median WS classification accuracy, 
Fig.3c and Fig.3d, respectively. For the highest performing 
subject, our proposed method improved the accuracy by 
approximately 15% compared to the WS method and by 7% 
relative to the BS-ASR method (Fig.3c). Similarly, for the 
median performing subject, our proposed method 
outperformed the WS and BS-ASR methods by approximately 
15% and 10% respectively (Fig.3d). 

As discussed in the Introduction, our focus here was on 
eliminating continuous components related to signal non-
stationarity and evaluating the impact on performance. To 
achieve this, we employed a relatively simple preprocessing 
pipeline. However, it is valuable to explore the effect of 
integrating a more advanced artifact removal technique. For 
the IEEE dataset, we also assessed the impact of applying 
artifact subspace reconstruction (ASR) [31] on between-
session classification. As shown in Fig. 3a and 3b, 
incorporating ASR during preprocessing improved the 
performance of naïve between-session classification. 
However, the performance remained significantly lower 
compared to that achieved using AEs.

Regarding the classification of the origin session, the 
residual signals demonstrated comparable accuracy to the 
original signals, with 82% and 79% accuracy, respectively. In 
contrast, the reconstructed signals showed significantly lower 
accuracy with 60% accuracy (Fig. 3e); the chance level was 
~14.3%. 

There was no notable difference in performance between 
the uAE and the sAE, as both approaches produced similar 
outcomes for session classification using the reconstructed 
and residual signals. 

3.3 Shu Dataset

Regarding the Shu dataset, the accuracy of the within-
session method exceeded that of the proposed AE cross-
session method, with a discrepancy of approximately 5%. Our 
proposed AE cross-session method performed better than the 
basic cross-session approach, but the increase in accuracy was 
marginal, with a difference of around 1% (Fig. 4a). After 
eliminating participants with a mean within-session accuracy 
below 60% (N=9), our AE method showed an improvement 
of 4% over the basic cross-session method; however, this 
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improvement was only evident in the sAE model, whereas in 
the uAE model, the difference between the two methods was 
2% (Fig. 4b).

The classification of origin session showed that the 
residual signals had similar accuracy to the original 
preprocessed signals, achieving 95% and 94% accuracy 
scores, respectively. On the other hand, the reconstructed 
signals exhibited significantly lower accuracy, with an 
accuracy of 66% (Fig. 4c); the chance level was 20%. The 
performance of the uAE and sAE approaches was 
indistinguishable since both methods yielded comparable 
results in session classification using both the reconstructed 
and residual signals.

3.4 Power Spectrum Comparison

To gain further insight into the effect of the AE on EEG 
signals, we compared the power spectral densities (PSDs) of 
the original EEG signal, the reconstructed AE EEG signal, and 
the residual signal (Fig. 5). Our analysis focused on electrodes 
C3 and C4, which are known to be informative for MI BCI 
and examined both left and right motor imagery (using the 
IEEE dataset). 

For both electrodes, the PSD of the reconstructed AE 
signal exhibited typical EEG behavior within the relevant 
frequency range (<30Hz), while the residual signal exhibited 
noise-like characteristics.

4. Discussion
This paper introduces a novel approach to address domain 

adaptation challenges in EEG signal analysis across different 
sessions. The necessity for domain adaptation arises due to the 
dynamic nature of brain activity, which makes it non-
stationary. Various existing methods for domain adaptation 
rely on having some data from the target domain (new 
sessions), employing different techniques to learn a 
transformation for the new session signals that align with the 
training data used for model development. In contrast, our 
proposed method does not depend on training with signals 
collected from the target domain, making it fully unsupervised 
with respect to the target domain, and eliminating the need for 
recalibration with each new session. Instead, it focuses on 
aligning multiple sessions in a general manner, reducing 
session-specific information while preserving task-related 
signals. 

Our approach utilizes AEs to extract a low-dimensional 
representation of the EEG signals that captures the 
information relevant to the MI task while effectively filtering 
out session-specific components. Beyond the standard 
reconstruction error term used in the AE, we introduced two 
additional objectives during the training process: a task loss 
and an origin-session loss. The task loss is designed to 
improve the classification of MI classes, while the origin-
session loss seeks to distinguish between sessions using the 
residual signals. These dual objectives enable the AE to learn 
more robust feature representations in the latent space, which 
are less susceptible to session-specific variations and better 
equipped to handle the inherent non-stationarity of EEG data.

Interestingly, for the stroke patient dataset, our proposed 
method performed better than the within-session method, 
which is considered the benchmark for non-stationary data. 
Additionally, for the IEEE dataset, our AE model yielded 
higher accuracy scores than the within-session method, 
suggesting that task-related information is better represented 
in the reconstructed signals. Notably, the improvement is even 
more remarkable when subjects with poor performance in the 
MI task (as determined by the within-session method) were 
removed. In other words, if the signals are not very 
informative to begin with, there is not much room for 
improvement in the model. As for the Shu dataset, our 
hypothesis that the model can effectively denoise non-
stationary signals for MI classification was only partially 
supported. While the observed improvement was modest, it 
was nevertheless evident. It is worth noting that the variability 
between MI-EEG datasets can be substantial due to 
differences in recording hardware, instructions, experimental 
protocol, and other factors.

The observed trend in the within-session score for the Shu 
and IEEE datasets reveals that as additional data are 
incorporated into the training set, the score progressively 
decreases. We posit that this decline stems from the inclusion 
of data originating from multiple sessions, leading to 
increased variability unrelated to the task at hand (non-
stationary variability). Consequently, this variability impedes 
the model's ability to learn effectively. This can explain the 
fact that our method outperformed even the within-session 
benchmark in the IEEE and stroke patient datasets. 
Conversely, our proposed method exhibited an opposing 
pattern, demonstrating improvement over time. Even within 
the Shu dataset, which comprises only 5 sessions, it is 
plausible that when provided with a greater number of 
sessions, the AE method will outperform the within-session 
method. This observation supports another advantage of AE 
domain adaptation over alternative methods for different 
domain adaptation scenarios. Unlike other approaches that 
solely apply the transformation to the test set, our method 
applies it to both the training and test sets. This enables the 
model to enhance its learning process by eliminating non-
stationary signals from the training set prior to learning.

The significant decrease in accuracy of origin session 
classification for reconstructed signals, as compared to the 
original preprocessed signals, lends support to the notion that 
the loss function applied to the compressed residual signals 
helped to remove session-specific information from the 
signals. In conjunction with the improvement in task accuracy, 
we can reasonably infer that our method effectively denoised 
non-stationary signals that impede the accuracy of the BCI 
model.

To gain further insight, we examined the effect of 
incorporating the ASR method for artifact removal. While it 
enhanced the performance of the between-session classifier, it 
was still substantially below the performance obtained with 
the uAE and sAE. Together with the observation that the AE 
removes session-specific information, this indicates that the 
AE does much more than artifact removal. 
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Our proposed AE model can be applied to a wider range 
of BCI tasks, as it is simple to use and does not require 
additional data collection. Our method is compatible with 
more complex classification models, which can be integrated 
due to the fact that our method only denoises EEG signals. 
While state-of-the-art models that address the cross-session 
domain adaptation in BCI can perform better than our 
proposed model [35], they all suffer from the need to collect 
new data each session. In contrast, our model's greatest 
advantage lies in its ability to achieve high performance using 
only the provided training set, without the need for data 
collection or recalibration. Domain adaptation for cross-
session recordings in the neural activity of monkeys was also 
demonstrated during motor tasks with single cell recordings, 
but not in the BCI context [36]. Our work shows that the idea 
of unsupervised domain adaptation can be implemented with 
EEG and in the BCI context. Additionally, the residual signals 
may contain information that is unrelated to the MI task, but 
could be studied to explore non-stationary brain dynamics, the 
subject's mental state, and other brain processes. Such 
research topics can be addressed using our AE model, which 
can be viewed not just as a denoising tool for non-stationary 
signals, but also as a means of disentangling information-
carrying signals and non-stationary components. 

It is important to emphasize that our primary objective was 
to address the issue of brain dynamics non-stationarity 
between sessions, aiming to eliminate the need for system 
recalibration with each new session. To this end, our goal was 
to demonstrate the relative contribution of the AE in 
overcoming non-stationarity, rather than obtaining the highest 
absolute performance in BCI classification. To achieve this, 
we used a basic preprocessing approach and employed CSP 
and multiclass LDA for classification. Clearly, incorporating 
better artifact removal in the preprocessing stage and applying 
more sophisticated state-of-the-art classification methods, 
would improve the absolute performance. For example, in a 
previous publication [22] we used Filter-Bank CSP (FBCSP) 
for feature extraction, which led to improved performance on 
the same data. Here, for considerations related to 
computational cost, we used a simple CSP approach. Because 
the focus was on relative improvements, we also did not 
attempt to compare the absolute performance of our method 
with state-of-the-art bench marks on the public datasets.

While our previous work, as illustrated in Fig. 3, achieved 
higher accuracy, it did not effectively address the non-
stationarity challenge. In contrast, the current study 
demonstrates that our supervised AE approach is more robust 
to these session-specific fluctuations. Furthermore, this study 
analyzes three different MI datasets and focuses on offline 
systems. Extending this work to online systems, using more 
sophisticated classifiers, and other tasks, such as mental 
imagery BCI, remains a goal for future research. This 
extension aims to further generalize our findings and validate 
the effectiveness of our proposed methodology across broader 
applications.
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Figure 1. Model  Architecture. a) Architecture for supervised autoencoder (SAE) training. The task loss corresponds to the cross-entropy for 
predicting task labels (e.g., left/right motor imagery) using the latent space. The origin session loss represents the cross-entropy for predicting 
the session of data origin, based on the auto-encoder (AE) residuals. The reconstruction loss is the mean squared error between the input and 
output of the AE. The model is trained to minimize the sum of these three loss terms. b) Architecture for common spatial pattern (CSP) and linear 
discriminant analysis (LDA) training and inference. The AE component of the network from part a is used to reconstruct the signals as a 
preprocessing step before applying the CSP-LDA classifier.
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Method Training set Test set

Cross-
Session

Sessions 1 to K Sessions K+1 to L

Within-
Session

80% of trials from 
the same session

The remaining 20% of 
trials from the same 

session

Data 
Origin 
Session

80% of trials from 
different sessions, 

labeled with 
session number

The remaining 20% of 
trials from different 

sessions, labeled with 
session number

Table 1. Overview of training and test set divisions for each method. 
The 'Cross-Session' method uses data from different sessions, the 
'Within-Session' method focuses on data from the same session, and the 
'Data Origin Session' method emphasizes the session from which the 
data originated.
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Figure 2. Stroke patient results. Mean over 10 realizations; shaded 
are standard error over realizations. A) Classification accuracy for MI 
task using the within-session (WS) method (green), between session 
(BS) method (blue), unsupervised auto-encoder (uAE) method 
(purple), and supervised auto-encoder (sAE) method (red). B) 
Classification accuracy for the session from which the data originated. 
Original preprocessed signals (green), reconstructed signals from the 
uAE (purple) and sAE (blue), and the residuals from the AE (yellow), 
and sAE (red). 

N

Note: Figure
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Figure 3. IEEE dataset results. Mean classification accuracy over 10 realizations, with shaded areas representing the standard error. A) Classification 
accuracy for the MI task, using the within-session (WS) method (green), between-session (BS) method (blue), between-session with artifact-subspace 
reconstruction (BS-ASR) method (yellow), and the unsupervised (uAE) and supervised (sAE) auto-encoder methods in purple and red, respectively. B) 
Classification accuracy for the MI task considering only subjects who achieved WS accuracy above 30%. C) Classification accuracy for the subject with 
the highest WS accuracy. D) Classification accuracy for the subject with median WS accuracy. E) Classification accuracy for the session from which the 
data originated. Preprocessed EEG signals (green), the reconstructed signals from the uAE (purple) and sAE (blue), and the residuals from the uAE 
(yellow) and sAE (red). 

Figure 4. Shu dataset results. Mean over 10 realizations; shaded are standard error over realizations. A) Classification accuracy for the MI task, using 
the within-session (WS) method (green), between-session (BS) method (blue), and the uAE (purple) and sAE (red) methods. B Classification accuracy for 
the MI task considering only subjects who achieved WS method accuracy above 30%. C) Classification accuracy for the session from which the data 
originated. Original preprocessed signals (green), the reconstructed signals from the uAE (purple) and sAE (blue), and the residuals from the uAE 
(yellow) and  sAE (red)
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Figure 5. Power spectrum results of electrodes C3 and C4.  A) Power spectrum of electrodes C3 (left) and C4 (right) for right hand MI. B) Power spectrum of 
electrodes C3 (left) and C4 (right) for left hand MI. The analysis was based on the IEEE dataset. 

(a)

(b)
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