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Abstract. Changes of hidden sources of the neural electrical activity of a brain over time, as
represented by a continuously recorded multichannel electroencephalogram (EEG) at the scalp,
can be detected by tensor or multiway decomposition of the EEG records. In this study, the
performance of i) the constrained Tucker model and ii) the parallel factor analysis (PARAFAC)
models are compared on real EEG data.
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Introduction
The multichannel EEG provides a useful tool for the description of the neural activity of a
brain. Analysis of multichannel spatially distributed EEG information is preferred over a sepa-
rate analysis of EEG signal from every single electrode.

The Tucker model [1], and its restricted version the parallel factor analysis (PARAFAC)
[2, 3] are two methods developed for detection of hidden factors of multiway data, such as the
multichannel EEG recorded over time.

In this study, we validate and compare both methods on EEG data recorded during the mirror
therapy training of a patient after a stroke. With the aim to detect oscillatory EEG rhythms
associated with the motor activity of the subject, we analysed the data using the PARAFAC
model [4]. However, the resemblance of the observed spatial distribution of several in frequency
not overlapped oscillatory sources motivates us to investigate a more flexible Tucker model,
with the expectation of a more parsimonious representation of data.

Therefore, the aim of the article is to compare the performance of the Tucker model with
PARAFAC and to choose a more compact model helping us to better interpret and represent
hidden sources of the neural electrical activity of the recorded data.

Subject and Methods
Data
The subject was a 58-year-old man who had a right-hand hemiplegia due to an ischemic stroke
that had occurred to him 2 years before he entered the study. The EEG recording was performed
during the mirror box training when the patient tried to move both hands. Multichannel EEG
signal with the sampling frequency of 512 Hz was recorded at 10 electrodes (FC3, C1, C3, C5,
CP3 and FC4, C2, C4, C6, CP4) and referenced to averaged earlobes.

After careful semi-automatic artifact detection and removal step, the data were downsam-
pled to 128 Hz and divided into 2-second-long time segments with the overlapping period of
250 ms. Then, the oscillatory spectral part of the logarithmically transformed power spectrum
densities in the range of 0 - 64 Hz was extracted using the irregular resampling analysis method
[5], which was applied to each electrode separately.

Using this oscillatory spectral data representation, the three-way tensor X ∈ RI×J×K with I
time segments, J electrodes, and K frequencies was constructed and zero-mean centered across
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the first dimension

xcent
i jk = xi jk−

1
I

I

∑
i=1

xi jk, i = 1, . . . , I; j = 1, . . . ,J; k = 1, . . . ,K.

Parallel Factor Analysis - PARAFAC
The PARAFAC model [2, 3] is a generalisation of principal component analysis (PCA) to
higher dimensions. The three-way PARAFAC model provides a decomposition of the tensor
X ∈ RI×J×K into matrices A ∈ RI×F , B ∈ RJ×F , and C ∈ RK×F

xi jk =
F

∑
f=1

λ f ai f b j f ck f +ηi jk, i = 1, . . . , I; j = 1, . . . ,J; k = 1, . . . ,K,

by minimising the sum of squared residuals. The elements λ1, . . . ,λF are scaling factors, be-
cause the columns of A,B and C are assumed to have unit length. The solution is unique under
very mild assumptions [6], which makes PARAFAC a powerful tool for multiway data analysis.

To allow easier and clear neurophysiological interpretation of the results, the loading ma-
trices A (time components), B (space components) and C (frequency components) were con-
strained to be nonnegative. In the case of C also unimodality of its columns was considered.

Tucker model
In contrast to PARAFAC, the considered three-way Tucker model does not assume the same
number of factors within each dimension. The columns of the loading matrices Ã ∈ RI×M, B̃ ∈
RJ×N , and C̃ ∈ RK×O are mixed together by a core tensor G ∈ RM×N×O

xi jk =
M

∑
m=1

N

∑
n=1

O

∑
o=1

gmnoãimb̃ jnc̃ko + εi jk, i = 1, . . . , I; j = 1, . . . ,J; k = 1, . . . ,K.

The Tucker model is less restrictive than PARAFAC but at the cost of rotation freedom of
the solution. However, the non-uniqueness of the solution can be solved by restrictions to the
loading matrices.

Similarly to PARAFAC, we considered the non-negativity constraints for Ã, B̃ and the non-
negativity and unimodality constraints for columns of C̃. The core tensor G was set to be non-
negative and to have diagonal lateral slices. In other words, a frequency vector (a column of C̃)
is connected with only one time vector (a column of Ã), but it can be related to different space
vectors (columns of B̃). Consequently, M = O and gmno 6= 0 only if m = o; m,o = 1, . . . ,M.

These constraints have made the Tucker model to be “equivalent” with PARAFAC

xi jk =
M

∑
m=1

N

∑
n=1

O

∑
o=1

gmnoãimb̃ jnc̃ko+εi jk =
M

∑
m=1

ãimc̃km

(
N

∑
n=1

gmnmb̃ jn

)
+εi jk =

M

∑
m=1

ãimc̃kmb̃?jm+εi jk.

Due to the uniqueness of the PARAFAC solution, the estimates of Ã and C̃ are also unique.
Moreover, the space components in PARAFAC are a linear combination of space components
estimated by the Tucker model.

Setting the number of components in PARAFAC and Tucker model
The number of components F = 6 in PARAFAC and M = 6, N = 2 in the Tucker model were
chosen to balance minimisation of the mean squared error (MSE) and maximisation of the
explained variance and the core consistency diagnostics (CorConDiag) [7].

CorConDiag ∈ (−∞,1] represents the appropriateness of PARAFAC or the constrained
Tucker model in comparison to an unconstrained Tucker model with the same factors. Values
close to 1 indicate that the constraints in the model are appropriate.
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Results and Discussion
Both, the PARAFAC and Tucker models performed similarly when analysing EEG records
from all 11 days. This was true considering the MSE (≈ 4.73×108) measure, the proportion of
explained variance (≈ 6.4%) or visual inspection of the time and frequency components (Fig.
1). However, the Tucker model provided approximately the same results with a lower number of
factors. Moreover, the CorConDiag values of the Tucker model were at least two–times higher
than in PARAFAC (Table 1), favouring the Tucker model.

Next, estimated time, space and frequency components from the 4th day are analysed. Re-
sults for other days were similar.

The space components estimated by PARAFAC visually follow two different profiles (Fig.
2). These profiles represent either the right (components 5, 6) or the left hemisphere (com-
ponents 3, 4). Component 2 (8 Hz) is located predominately in the right hemisphere, but in
comparison to components 5 or 6, it shows higher weights also for electrodes on the left part
of the scalp. Component 1 represents the neural activity of 6 Hz symmetrically located at both
hemispheres.

The first space component in the Tucker model (Fig. 3) represents the neural activity in the
left hemisphere and is related mainly with the frequency components 3 and 4, see higher scores
for these components in the first lateral slice of the tensor G (values 2.11×103 and 2.61×103).
On the other hand, the frequency components 5 and 6 achieved higher scores (2.20× 103 and
1.97× 103) for the second space component that represents the right hemisphere (Fig. 3). The
frequency components 1 and 2 are related to both space components which is consistent with
the results obtained by PARAFAC.
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Fig. 1: The PARAFAC and Tucker decomposition of the 4th day EEG data. The top row represents time
components, the corresponding frequency components are depicted in the bottom row.

Fig. 2: The space components of the 4th day EEG data estimated by PARAFAC (top row). The corre-
sponding topographical maps are depicted in the bottom row.
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Fig. 3: Left: The space components of the 4th day EEG data estimated by the Tucker model (top row)
and the corresponding topographical maps (bottom row). Right: The lateral slices of the core tensor G.

Table 1: The core consistency diagnostic (CorConDiag) of PARAFAC and the Tucker model.

Day 1 2 3 4 5 6 7 8 9 10 11

PARAFAC 0.32 0.17 0.13 0.22 0.23 0.17 0.04 0.19 0.20 0.12 0.18
Tucker 0.68 0.79 0.59 0.73 0.82 0.67 0.69 0.72 0.75 0.77 0.77

Conclusion
For all 11 investigated days, the PARAFAC and the restricted version of the Tucker model pro-
duced similar decompositions of the oscillatory part of the EEG power spectra. This was true
considering either the MSE, the proportion of explained variance, visual inspection or loca-
tion of neural activity on different frequencies in the left or right hemisphere. However, higher
CorConDiag values and a lower number of components needed to describe the data variability
indicate that the Tucker model is preferred. Further validation of the result will be studied using
higher density EEG recordings with channels distributed over the whole scalp.
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