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Abstract. A number of factors is an essential parameter in the tensor decomposition methods.

It significantly influences not only the decomposition quality but also its interpretation. Many

approaches and heuristics were proposed for this purpose. However, their performance is usu-

ally demonstrated on data with a simplified structure, and therefore they can produce inferior

results when applied to more complex real data. In this study, on a generated dataset closely

mimicking the nature of a human multichannel electroencephalogram (EEG), we compared the

performance of five methods for selecting the number of factors. We identified the best perfor-

ming method, but not even this method led to sufficiently acceptable results.
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Introduction
Tensor decomposition is a powerful tool for detecting hidden structure in higher-order arrays
(tensors), for example, in chemometrics, psychometrics, or neurophysiology [1]. An important
parameter, which influences the decomposition quality, is the number of hidden factors F . To
determine F , we have to apply a suitable method. Several approaches for selecting the number of
factors or heuristics with different assumptions and computational complexity were proposed,
but none of them became a state-of-the-art approach. Then, which one to use?

This study aims to help answer this question by comparing five methods for selecting F in the
parallel factor analysis (PARAFAC) tensor decomposition [2] on artificial data that mimics the
multichannel EEG signal character. We have two main reasons for choosing this particular type
of data. First, our long-term research focuses on EEG tensor decomposition by PARAFAC. We
often face the problem of correctly determining F . Second, existing methods’ performance is
usually compared on artificially generated data with a simplified structure that does not follow
the real data character. For example, the factors are often generated as mutually orthogonal or
independent and identically distributed random sample from a normal or uniform distribution
[1, 3, 4]. However, EEG data are more complex, and both orthogonality and normality properties
miss their neurophysiological interpretation. Consequently, methods used to determine F can
produce inferior results when applied to such data.

Data and Methods
Data

We applied an anatomical forward model consisting of 2,004 dipoles placed in gray matter to
generate one minute of scalp 64-channel EEG data [5]. The generated signal comprises a broad-
band brain activity (BBA) and four narrow-band oscillations – 5 Hz oscillation located in the
frontal region, 8 Hz and 14 Hz oscillations in the central region and 11 Hz oscillation in the oc-
cipital region. The activity (presence) of each oscillation was generated as non-overlapping with
any other in time. To simulate BBA, we used a realization of the fractional Brownian motion
with the Hurst exponent H = 0.6. According to the amplitude of BBA, we define noiseless data
(N0), data with low (NBBAlow) and high (NBBAhigh) levels of BBA [5]. Moreover, we added
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Gaussian noise to each scalp EEG channel of the N0 data. To mimic the signal-to-noise ratio at
the occipital EEG electrodes of the NBBAlow and NBBAhigh data, we considered two levels of
the noise variance denoted as NGlow and NGhigh. These data are less in line with the character of
a real EEG signal (missing BBA), but follow the theoretical assumptions of methods described
below. For each type of data, we generated 20 datasets/realisations. Before applying PARAFAC,
the simulated EEG signal was segmented into two-second time windows with 1900 ms of over-
lap. The oscillatory part of the amplitude spectrum for each time window and each electrode
was transformed into a three-way tensor, representing the time-space-frequency modes [5].

Parallel Factor Analysis

The PARAFAC model [2] decomposes a three-way tensor X 2 RI1⇥I2⇥I3 into three matrices
A
(n) 2 RIn⇥F ,n = 1,2,3, where F represents the number of factors, and follows the equation

xi1i2i3 =
F

Â
f=1

a
(1)
i1 f

a
(2)
i2 f

a
(3)
i3 f

+ ei1i2i3 , in = 1, . . . , In, n = 1,2,3.

The tensor E 2 RI1⇥I2⇥I3 represents the error term. Similar to our previous studies [5, 6], we
assume nonnegativity of A

(1) and A
(2) together with unimodality of A

(3) columns to follow
neurophysiology of data and simplify the interpretation of decomposition.

Factor Number Selection Methods

The approaches for factor number selection can be divided into five sets according to their
character. By selecting the best performing candidate from each set, we focus on:

i) core consistency diagnostics (CCD) [7]: The CCD values are plotted against the number
of factors F and a rapid change in the graph is visually detected.

ii) non-redundant model order estimator (NORMO) [8]: The method searches for the
lowest F with any redundant factor in PARAFAC. But at least one redundancy occurs for
F +1. The algorithm considers either all F (NORMOE) or a subset of them (NORMOB).

iii) numerical convex hull (NCH) [3]: The method focuses on the maximal change in fit
between models belonging to the fit convex hull boundary.

iv) minimal description length (MDL) [4]: The approach analyses eigenvalues of matri-
cized forms of a tensor.

v) automatic relevance determination (ARD) [1]: ARD begins with a large F and conti-
nuously prune out factors with a small weight in PARAFAC by using Bayesian statistics.
The algorithm follows either the sparse (ARDS) or ridge (ARDR) version.

To avoid convergence to a local optimum, the PARAFAC algorithm was run five times for each
F and the model with the lowest error was chosen.

We set the maximal number of factors F to 10. A method was considered successful if it
selected F = 4. Moreover, the estimated factors as a by-product of CCD, NORMO or ARD
were checked for consistency with the generated oscillations. Free parameters of each method
were carefully tuned to achieve the best possible output. We set the threshold a > 0.9 for F

selection in NCH and MDL. For NORMO, we set a = 0.7.
The original ARD does not allow us to apply the unimodality constraint, and therefore we had

to modify the algorithm. Moreover, the tolerance tol for pruning out the unnecessary factors, as
suggested by authors, could not decrease the maximal allowed F = 10. Different tol values led
to different F , and without a priori knowledge about the true F (which is always unknown in
practice), we could not set optimal tol value. Therefore, we propose the following modification.
In each iteration step, we ordered the factors according to their increased norms, and we skipped
the first few factors with cumulative normalized norms under 0.1.
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Fig. 1: First and second row: The core consistency diagnostics (CCD) of PARAFAC with two to 10
factors. Third and fourth row: Histograms of selected factor number in 20 datasets by the non-redundant
model order estimator (NORMOB, NORMOE), numerical convex hull (NCH), minimal description
length (MDL) and automatic relevance determination (ARDS, ARDR). Red dashed vertical lines rep-
resent the correct factor number F = 4. Three columns represent data with no noise (N0), low and high
broadband brain activity (NBBAlow,NBBAhigh) or Gaussian noise (NGlow,NGhigh).

Results and Discussion
A visible rapid drop in CCD (Fig. 1, first and second row) allowed us to select F = 4 only for
N0. For NGlow data, the number of factors was overestimated (F = 5). The CCD values decrease
relatively linearly for the other data types, and it was not possible to visually select the best F .

Both NORMO versions detected the correct F for N0 and NGlow in less than one-third of
datasets (Fig. 1, dark and light blue). Due to BBA or Gaussian noise, the estimated factors
showed numerically weak correlation (< 0.5) despite many physiological similarities detected
by visual inspection. Consequently, NORMO resulted in F close to the maximal allowed value
10 for NBBAlow, NBBAhigh and NGhigh.

The correct F = 4 was detected by NCH in 16 N0 and NGlow datasets (Fig. 1, green). How-
ever, F = 4 was chosen in only four cases for NBBAlow and two factors were incorrectly chosen
in all NBBAhigh datasets. For NGhigh, the selected F varied between two and 10.

MDL failed to select the correct F in one-half of N0 datasets (Figure 1, black). BBA or
Gaussian noise’s presence forced the F selection to the maximal allowed value equal to 10.

ARDR and ARDS performed well for N0 and NGlow, the correct F = 4 was selected in at
least 15 of 20 datasets (Figure 1, yellow and orange). For NBBAlow and NGhigh the performance
had decreased and led to F = 5 or F = 6. However, only 14 Hz oscillation was present in the
estimated five or six factors. The other factors represented higher oscillations or noise. The
ARD method was not able to recover the correct number of factors for NBBAhigh.
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Conclusions
We compared the performance of five methods for selecting the number of factors in PARAFAC
on generated multichannel EEG data. MDL and NORMO methods fail to choose the correct
number of factors already for noiseless data. Increasing the level of broadband brain activity
(BBA) or Gaussian noise deteriorates the other methods’ performance. The best, but still far
from ideal, results were obtained by ARD. We can conclude that none of the considered methods
provides satisfactory results.

Moreover, we observed inferior results in data with BBA compared to data with Gaussian
noise. We hypothesise, that this is due to the methods’ assumption of the tensor trilinear struc-
ture and presence of Gaussian noise. This assumption is not met in the data with BBA.

In real EEG data, BBA and a measurement noise make detecting narrow-band scalp oscilla-
tions harder. Due to the investigated methods’ failure to determine correct F in well-controlled
generated data, we expect similar sub-optimal performance when applied to real EEG data. In
[6], we addressed the problem of the factor number selection differently. We ran PARAFAC
models with different F and applied the cluster analysis on obtained decompositions. This al-
lows us to identify the most dominant clusters representing the subject-specific narrow-band
scalp EEG oscillations.

Nevertheless, selecting the number of factors in the PARAFAC model remains an open prob-
lem, and new approaches are needed.
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