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Abstract. Thresholding methods usually detect neural spikes or bursts of electrical pulses in
a cortical electrophysiological signal. Due to the possibility of multiple threshold crossings
representing the same spike, it is essential to set spike temporal boundaries to prevent double
detection appropriately. We consider three spike validation methods and compare their perfor-
mance on a set of simulated electrophysiological data mimicking the spiking activity of a neuron
with different amounts of background noise. Since the results of one method rapidly deteriorated
with decreasing signal-to-noise ratio, we formulate a modification leading to the algorithm’s
performance improvement.
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1. Introduction
Neural spikes are short bursts of electrical pulses, or action potentials, through which neural
cells communicate with each other (Fig. 1, right). They are usually recorded as the voltage
changes by the thin glass or metal electrodes (pipettes) in the vicinity of a target neuron [1].
Among other approaches, neural spikes are detected by comparing the signal or its appropriate
transformation with a fixed or adaptive (time-varying) threshold. Points with their amplitude
over the positive threshold or under the negative threshold are denoted as spike candidates.

If one point crosses a threshold and is part of a spike, the neighbouring samples will also
cross the threshold [2]. Many threshold crossings in a short period can therefore be viewed as
the same event. Consequently, it is essential to determine spikes’ start and end points correctly
to avoid double detection. Performing this validation step may significantly reduce the number
of false alarms, that is, spikes that are incorrectly detected [3].

This study aims to compare the performance of three spike validation methods in terms of
their ability to detect the actual neural spike positions while minimising false alarms. However,
in real-world data, the exact spike timing is unknown. Therefore, we used simulated data with
known spike positions and different levels of background noise closely mirroring the properties
of the real-world neural electrophysiological signal.

2. Data
Inspired by the work of Smith and Mtetwa [4], we simulated a five-second spiking activity of a
neuron with the Poisson distribution of firing times and the sampling rate of 100 kHz. The spike
shapes followed the realistic Naundorf model [5] with a spike duration of 4.44 ms and positive
polarity. The number of spikes within this five-second long period varied between 316 and 334.
The refractory period (Fig. 1, left) – a short interval after a spike during which a neuron is not
able to fire – was set to a larger value (10 ms) to avoid too close or partially overlapped spikes.

The background noise included i) spike trains of seven neurons correlated with the spike
train of the target neuron, and ii) the activity of other 100 neurons firing independently from the
target neuron. The background noise amplitude was divided by 10 to avoid overlaying the target
spikes. Finally, the signal was distorted by different amounts of Gaussian noise, resulting in six
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levels of signal-to-noise ratio SNR ∈ {50,35,25,10,0,−5} dB. For each SNR, we considered a
set of 10 electrophysiological signals (Fig. 1, right).
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Fig. 1: Left: Schema of a neuron spike. Original image from [6]. Right: An example of a simulated
electrophysiological signal with neural spikes and signal-to-noise ratio SNR = 35 dB.

3. Methods
In the first step, an adaptive threshold was set by the AdaBandFlt method [1], and an indicator
vector for successful threshold crossings was computed for each simulated signal.

In the method of Wagenaar [3, 1], a candidate threshold crossing x represents a spike’s centre
only if it forms the highest peak of either polarity over the ±1 ms time interval. Moreover, its
amplitude should be at least two times higher than the amplitude of the second-highest peak with
the same polarity on this interval (Condition 2). Finally, the distance between two consecutive
spike centres should be at least θre f rac, where θre f rac represents the refractory period.

Toosi’s method [2] sets the spike’s center as the local minimum point to the right of the
first threshold crossing if it does not occur within the previous spike’s refractory period. Conse-
quently, the spikes are aligned to their global minimum.

Nenadic [7] used a different approach. Time points where 0 changes to 1 or vice versa in the
indicator vector represent starting and ending points of spikes. Then, the spike’s centre candidate
is computed as the mean between the corresponding starting and ending points. Consecutive
candidate centre points xi and xi+1 are analysed sequentially. If xi+1 and xi are close to each
other (xi+1−xi ≤ θmerge), these two points represent the same spike with a high probability, and
a new candidate centre point is computed

⌈xi+xi+1
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⌉
. If xi+1− xi > θmerge, but xi+1 lies within

the refractory period of the ith spike
(
xi+1− xi < θre f rac

)
, the candidate point xi+1 is discarded.

Otherwise, xi and xi+1 represent the centre of the ith and (i+1)th spike, respectively.
After neural spike validation, we set the spike boundaries as x±2,22 ms, where x represents

the selected centre of a spike. Then, we computed the number of
i) correctly identified spikes (true positives, TP),
ii) undetected actual spikes (false negatives, FN),
iii) incorrectly detected spikes (false positives, FP), and
iv) the mean distance between detected and actual spikes starting points (mD)

for each method.
A spike was considered to be correctly identified if it overlapped at least 80% with one of

the actual spikes. Then, the positive prediction rate (PPR), and sensitivity or recall (R) were
evaluated by the following formulas

PPR =
T P

# detected spikes
=

T P
T P+FP

R =
T P

# actual spikes
=

T P
T P+FN

.
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4. Results
All three methods successfully detected all generated spikes when data includes a small amount
of Gaussian noise (SNR = 50 dB, Fig. 2).
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Fig. 2: The mean (solid line) ± standard deviation (shaded area) of positive prediction rate (PPR), recall
(R) and the mean difference (mD) in starting points between actual spikes and spikes detected by the two
versions of Wagenaar’s method, Toosi’s and Nenadic’s approach.

The performance of Wagenaar’s method deteriorated for SNR ∈ {25 dB,35 dB}. Moreover,
the algorithm was not able to detect any spike for SNR≤ 10 dB resulting in R = 0 and missing
values of PPR and mD (Fig.2, top left). After a deeper inspection of Wagenaar’s algorithm, we
observed that the method’s failure was caused by Condition 2, which was never met for data
with a higher amount of noise. After removing Condition 2 from the algorithm (Wagenaar2), the
method’s performance improved. As depicted in Fig. 2 (top right), PPR and R for Wagenaaar2’s
and Nenadic’s methods reached approximately the same values.

Fig. 3: Original simulated spikes with SNR = 35 dB (left) and SNR = 10 dB (right) and corresponding
spikes detected by the two versions of Wagenaar’s method, Toosi’s and Nenadic’s approach.

Methods of Toosi and Nenadic were able to detect almost all generated spikes, and their per-
formance deteriorated only for SNR ≤ 0 dB (Fig. 2, bottom). Nevertheless, this was expected
because data with such a low SNR includes approximately the same amount of the target signal
and noise.
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Nenadic’s algorithm achieved the lowest average temporal distance between the starting
points of generated spikes and those correctly detected (0.2− 0.3 ms, Fig. 2, bottom right),
but at the cost of misaligned spikes characteristics (local minima and maxima, Fig. 3). On the
other hand, constant mD≈ 0.41 ms was observed for all levels of SNR in Toosi’s approach due
to spike alignment to their global minima. Although Wagenaar’s approach does not align the
spikes a priori, its mD values were similar to Toosi’s results, and the detected spikes were also
aligned to the local minimum. However, as depicted in Fig. 3, the spikes alignment disappears
after removing Condition 2 (Wagenaar2) for SNR≤ 35 dB.

5. Discussion and Conclusions
In this article, we compared the ability of three spike validation methods to identify spikes
in simulated neural electrophysiological data. Wagenaar’s method was unable to detect spikes
when more noise was present because any candidate spike satisfied the condition of having the
global peak amplitude at least twice as high as the second-highest peak of the same polarity.
After removing this condition from the algorithm, the method’s performance increased and was
comparable to Toosi’s and Nenadic’s methods.

Nenadic’s method sets the starting points of detected spikes closest to the generated spikes
but at the cost of spikes misalignment. Spike validation is usually followed by spike clustering
in order to detect dominant spike patterns. When using Nenadic’s approach, we recommend
aligning spikes before clustering because misalignment may result in many spurious or outlier
clusters. On the other hand, this alignment step is not necessary when considering Toosi’s al-
gorithm. It’s only required to realize that Toosi’s spikes start a bit earlier than the actual spikes.
Therefore we can conclude that Toosi’s and Nenadic’s methods can be used for spike validation.

Nevertheless, in this study we examined a specific case with spikes following the same am-
plitude and having a relatively long refractory period. Therefore, further analysis of simulated
data with spikes following varying amplitudes or shorter refractory periods is needed.
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