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Abstract. SPECTER (the Signal sPECtrum Tensor decomposition and Eye blink Removal) is a 
novel algorithm designed to detect and elimininate eye blink-related artifacts from electroen-
cephalogram (EEG) recordings. Our previous study [1] demonstrated its superior performance 
compared to established regression-based methods or independent component analysis, espe-
cially in situations where these approaches failed to accurately detect eye blinks or introduced 
spurious oscillations into the signal. In this study, we introduce SPECTER 2.0, an improved ver-
sion that addresses the limitations of the original algorithm, and we demonstrate its improved 
performance on a real EEG dataset affected by eye blinks.
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1. Introduction
Human electroencephalogram (EEG) provides valuable insights into brain activity. However,
raw EEG signals can be contaminated by various artifacts, which may arise from factors such as
eye blinks, muscle movements, electrical resistance between the skin and electrodes, and nearby
electronic devices. These non-EEG sources can significantly impact data analysis. Therefore,
the removal of these artifacts is a crucial preprocessing step for EEG data.

In our previous study [1], we introduced a tensor-based eye-blink removal algorithm called
SPECTER. A key advantage of SPECTER is that it does not require information from an
electrooculogram, unlike regression-based eye-blink removal methods. Moreover, SPECTER
avoids the problem of spectrum overestimation, a known limitation of artifact correction using
independent component analysis [2].

Despite its strengths, the preliminary version of SPECTER had several drawbacks, primarily
related to a slight time shift and the opposite sign problem. This study aims to address these
issues with SPECTER 2.0, an improved version of the original algorithm, and demonstrate its
performance on the same set of real EEG data used in [1].

2. A brief overview of the original SPECTER algorithm
The SPECTER algorithm is described in detail in [1], so we provide only a brief overview. First,
consider an EEG signal recorded by J electrodes at a sampling rate of S f Hz. The initial step in-
volves dividing the EEG signal from each electrode into overlapping time windows of length W .
Within each time window, the EEG signal is convolved with the Hanning window, and the Fast
Fourier Transform is applied to compute its amplitude spectrum. Then, the log10-transformed
spectral values are concatenated into a three-dimensional tensor X → RI↑J↑K , where I repre-
sents the number of time windows, J is the number of electrodes, and K denotes the number of
considered frequencies.

In the second step, tensor X is decomposed using the CANDECOMP/PARAFAC (CP)
method [3]. Artifact-related components are identified through an automatic selection criterion,
followed by manual inspection if necessary, and are subtracted from X [1]. The cleaned tensor
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is then transformed into a nonnegative form using the element-wise 10X function. Finally, the
clean EEG signal is reconstructed by the spectrum-to-signal transformation [4].

3. SPECTER 2.0
Due to the effects of windowing and convolution with the Hanning window, the original SPECTER
version struggled to accurately reconstruct the first and last S f

2 W time points of the EEG signal.
Additionally, the reconstructed signal sometimes exhibited slight time shifts either to the left or
right compared to the original EEG signal (Fig. 1, red). To mitigate these timing discrepancies,
we applied the dynamic time warping (DTW) algorithm [5] between the original and recon-
structed EEG signals in [1]. However, DTW can be time-consuming, and the length of the input
time series limits its effectiveness.

The second issue arises from missing information regarding the phase spectrum of the
cleaned EEG, which causes discrepancies in the signs of the values between the original and re-
constructed signal. In [1], we proposed a heuristic based on the Spearman correlation coefficient
! between the original and reconstructed signals over short, non-overlapping time intervals. If
! < 0 or other criteria were met, the reconstructed signal in that interval was multiplied by ↓1.
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Fig. 1: An example of the EEG signal (grey) from the FC3 electrode, showing the first (left) and last two
seconds (right), along with its versions reconstructed by SPECTER (red) and SPECTER 2.0 (black).

To address both issues, we propose the following modifications in SPECTER 2.0:

• Before applying SPECTER 2.0, we extend the EEG signal by adding constant segments
of length S f

2 W to both the beginning and the end of the original signal for each electrode.
These segments are equal to the initial and final values of the EEG, respectively. After
reconstructing the signal, we trimmed the added segments to ensure that the cleaned EEG
signal matched the length of the original one. Nevertheless, the option to apply DTW
remains available in SPECTER 2.0.

• In the spectrum-to-signal transformation step, the unknown phase spectrum of the cleaned
EEG was replaced by the phase spectrum of the original EEG. We hypothesize that, dur-
ing non-artifact intervals, the phase spectra of both the original and reconstructed signals
should overlap. As will be described in Section 5, this adjustment significantly improved
the issue of opposite signs. The heuristic introduced in [1] can still be applied to correct
any remaining intervals with opposite sign values.

4. Data
To demonstrate the advantages of SPECTER 2.0 over the original version, we focused on the
same eye-blink corrupted OSF dataset used in [1]. This dataset includes EEG signal from 19
electrodes1 collected from 40 subjects divided into four groups (studies). Additionally, the EEG

1Fp1 (or AF3), F3, F7, C3, T7, P3, P7, O1, Pz, Fp2 (or AF4), Fz, F4, F8, Cz, C4, T8, P4, P8, and O2

MEASUREMENT 2025, Proceedings of the 15th International Conference, Smolenice, Slovakia

ISBN 978-80-69159-00-6 54



signal for each subject consists of eight-second segments labeled as either “eye blink” or “non-
blink.” The sampling frequency was 100 Hz (for study 04) or 200 Hz (for studies 01-03). In
both versions of SPECTER, we applied 0.5-second time windows with 400 ms of overlap.

5. Results
In the initial step, the reconstructed EEG signal was divided into 100 ms time intervals. We
examined the ratio of these intervals that exhibited the opposite sign problem for each electrode
separately. For the EEG signal reconstructed using the original version of SPECTER, approx-
imately half of the time intervals for each subject and electrode required a sign change (see
Fig. 2, red). In contrast, with SPECTER 2.0, the average ratio of time intervals needing a sign
change decreased to between 0.10 and 0.19 for all electrodes (see Fig. 2, black).
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Fig. 2: The ratio of time intervals with the opposite sign problem after signal reconstruction with
SPECTER (red) and SPECTER 2.0 (black) in 40 subjects from the OSF dataset.

In the second step, we focused on the slight time shift problem. The reconstructed and
original EEG signal were time-aligned by DTW for each non-blink time segment. Then, the
Euclidean distance Ddtw between the warping and the real time was computed. Given the mod-
ifications made, we anticipated that the warping time would be closer to the actual time in
SPECTER 2.0 compared to the original version of the method. To test this expectation, we
applied the non-parametric Wilcoxon signed-rank test to assess the following hypothesis:

H0 : DSPECT ER
dtw ↔ DSPECT ER_2.0

dtw vs. H1 : DSPECT ER
dtw > DSPECT ER_2.0

dtw

The test was conducted for each electrode individually. We rejected the null hypothesis for
all 19 electrodes, as the p-values were approximately ↗ 10↓17, which were well below the
Bonferroni-corrected threshold of 0.05

19 = 0.0026.
Furthermore, we computed the Spearman correlation coefficient between the original EEG

signal and its reconstructed version over non-blink intervals. Similarly to the findings in [1], we
hypothesized that the signals would overlap on these intervals. The results for 19 subjects are
illustrated in Fig. 3. Without the DTW correction for slight time shifts, SPECTER 2.0 achieved
higher correlations than the original SPECTER (Fig. 3, dotted lines). Moreover, SPECTER
2.0 without DTW produced results comparable to SPECTER with DTW for several subjects,
including Subjects 2 and 3 from study 01 and Subject 5 from study 02 (Gig. 3). is consistent
with the significantly lower distance between the original and warping time in SPECTER 2.0.

When applying the DTW correction, SPECTER 2.0 generated a reconstructed EEG sig-
nal that was more similar to the original signal. This conclusion was supported by higher or
comparable correlation values relative to the previous version of SPECTER (Fig. 3, solid lines).
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Fig. 3: The median Spearman correlation coefficient between the original EEG signal and its versions
reconstructed by SPECTER (red) and SPECTER 2.0 (black) over the non-blink epochs. In both cases,
correlations were computed without (dotted line) or with (solid line) the DTW correction for the slight
time shift problem. Only labels for each second electrode are depicted on the x-axis.

6. Conclusion
In this study, we introduced an enhanced version of the eye-blink removal algorithm known
as SPECTER. The modifications we made significantly reduced the proportion of time inter-
vals containing opposite sign values. Additionally, SPECTER 2.0 produced EEG signals with a
lower incidence of slight time shifts. This improvement was evident in two ways: the warping
time was closer to the real time compared to the original SPECTER version, and there were
comparable correlations between the original EEG signal and the reconstructed signals from
both SPECTER 2.0 without DTW and the original SPECTER followed by DTW. This held true
across multiple subjects. Nevertheless, in the future, we plan to evaluate the performance of
SPECTER 2.0 on EEG signals affected by other types of artifacts, in addition to eye blinks.
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