
Prediction of Chaotic Time-Series with aResource-Allocating RBF NetworkRoman Rosipal, Milo�s Koska and Igor Farka�sInstitute of Measurement ScienceSlovak Academy of SciencesD�ubravsk�a cesta 9,842 19 Bratislava, Slovakiatel.: ++421-7-378 2839, 378 2518fax.: ++421-7-375 943e-mail: frosipal, koska, farkasg@neuro.savba.skAbstract. One of the main problems associated with arti�cial neural networks on-line learning methods is the estimation of model order. In this paper, we reportabout a new approach to constructing a resource-allocating radial basis functionnetwork exploiting weights adaptation using recursive least-squares technique basedon Givens QR decomposition. Further, we study the performance of pruning strategywe introduced to obtain the same prediction accuracy of the network with lowermodel order. The proposed methods were tested on the task of Mackey-Glass time-series prediction. Order of resulting networks and their prediction performance weresuperior to those previously reported by Platt [12].Key words: Givens QR decomposition, on-line learning, resource-allocating RBFnetwork, time-series prediction1. IntroductionThe resource-allocating network (RAN) was introduced by Platt [12]and further extended by Kadirkamanathan and Niranjan [7], McLach-lan and Lowe [11]. Since RANs are based on radial basis function (RBF)networks, two essential problems { weights adaptation and center selec-tion { need to be solved.Our approach to this task can be characterized by the followingfeatures:� center allocation using Platt's method,� adaptation of output-layer weights using Givens QR decomposition(GQRD) algorithm for recursive least-squares estimation [8],� introduction of a pruning strategy for existing centers based onmonitoring error-reduction proportion of individual centers.Generally, RAN allocates far fewer centers than is the number of pre-sented examples, but it can lead to exaggerated number of centers inthe case of long period data sequence [12]. Our modi�cation preventsthis undesirable e�ect and thus holds complexity of the network on the\low" level.



2 Roman Rosipal et al.2. Methods2.1. RBF NetworkA two-layer RBF network implements a mapping ŷ : Rn 7! R accordingto ŷ = b0 + NrXi=1 bi�i(kx� cik=hi)where x 2 Rn is an input vector, �i(:) is the transfer function, hi isthe i-th center width, k:k denotes the Euclidean norm, bi 2 R are theweights, ci 2 Rn represent the positions of RBF centers, and Nr is thenumber of centers. In our study Gaussian transfer function was used.2.2. Center Allocation and Learning StrategyThe network starts to learn with no centers. The condition for allo-cating a new center at (discrete) time j exploits two criteria pro-posed by Platt [12]. The �rst criterion is based on prediction errorje(j)j = jy(j)� ŷ(j)j, where y(j) is desired output. Error is comparedwith the critical value �. The second criterion is satis�ed if the Euclideandistance of input x(j) from the nearest center cnearest is greater thanthe critical scale resolution �(j). The learning starts with the largestscale of resolution, i.e. �(0) = �max, and � is multiplied at each timestep by a decay constant 0 <  < 1 until it reaches the smallest value�min. If both criteria are satis�ed, a new center is set ascnew(j) = x(j)with width hnew = �kx(j)� cnearest(j)k2 ;where � is a constant, and corresponding output weightbnew(j) = e(j) :LMS gradient descent is used to update positions of the centers�ci(j) = 2 �(hi)2 (x(j)� ci(j))�i(x(j))e(j)bi(j) ;where � > 0 is the learning factor.Summary of the network learning strategy can be described withthe following pseudo-code: NPL.tex; 10/03/1999; 17:57; no v.; p.2



Prediction of Chaotic Time-Series with a Resource-Allocating RBF Network 3�(0) = �max; b0(0) = y(0); Nr = 0; set �for j = 1 to number of iterations fpresent a new input-output pair (x(j); y(j))evaluate output of network ŷ(j) = b0(j) +PNri=1 bi(j)�i(x(j))compute error e(j) = y(j) � ŷ(j)�nd distance to nearest center d = min1�i�Nr kci(j) � x(j)kif je(j)j > � and d > �(j)allocate new center: Nr = Nr + 1; cNr (j) = x(j);bNr (j) = e(j); hNr = �d2else Update(b0(j); fbi(j); ci(j)gNri=1)if �(j) > �min�(j + 1) = �(j)gOur research con�rmed the fact revealed by McLachlan [10], thatafter adding a new center it is appropriate, for T time steps, just toadapt parameters of the network and not to allow another center allo-cation. The restriction is motivated by increase of the output errorobserved after adding a new center and thus indicating another centerallocation.2.3. Weights AdaptationThe on-line adaptation of output-layer weights b = [b0; b1; � � � ; bNr ]Tcan be formulated as a problem of �nding a weights vector b whichminimizes some performance criterion. A very popular criterion is thequadratic function de�ned at time t asVt(b) = tXj=0wt(j)e2(jjb) ; (1)where e(jjb) is the error signal at time j de�ned as e(jjb) = y(j) �ŷ(jjb) and wt(j) is a window function imposed on the error signalto reect time-varying signi�cance of past and recent information. Apopular choice of the window function is the exponential windowwt(j) = �t�j ;where 0 < � < 1 is a forgetting factor 1.It is obvious that from the viewpoint of weights adaptation, the RBFnetwork can be understood as a special case of linear regression modely(t) = �(t)b(t) + e(t) ; (2)1 It is necessary to note that in the case of non-stationary data, the applicationof the forgetting factor might improve estimate of the weights, but convergence isnot guaranteed (see, e.g. [8]). NPL.tex; 10/03/1999; 17:57; no v.; p.3



4 Roman Rosipal et al.where y(t) = [y(1); y(2); : : : ; y(t)]T ; e(t) = [e(1); e(2); : : : ; e(t)]T ; �(t)is t � (Nr + 1) matrix whose transpose �T (t) = [�(1); �(2); : : : ; �(t)];in which �(j) = [1; �1(j); : : : ; �Nr(j)]T is a (Nr + 1) � 1 vector of thehidden-layer outputs ( + bias term) at time j. Using the criterion (1),the determination of b(t) is a least-squares problem which leads torecursive solving of normal equations of the form [8]�(t)T�(t)�(t)b̂(t) = �(t)T�(t)y(t) ; (3)where �(t) = diag[�t�1; �t�2; � � � ; 1] � diag[�(t)�(t� 1); 1] is a (t� t)diagonal matrix. Let �1=2(t) be a Cholesky factor of the matrix �(t).Then we can rewrite (3) to the form(�1=2(t)�(t))T (�1=2(t)�(t))b̂(t) = (�1=2(t)�(t))T�1=2(t)y(t) :Gentleman [5] and Hammarling [6] derived an extremely e�cientQR decomposition algorithms to solve the system of equations (3).The algorithms are based on modi�ed Givens rotations which requireno square-root operation (for detailed analysis see [8, 2, 4]). QR decom-position constitutes a form of orthogonal triangulization and has par-ticularly good numerical properties. By writing�1=2(t)�(t) = Q(t)R(t) ;where Q(t) is a matrix with mutually orthogonal columns and R(t) isan upper triangular matrix, system (3) can be rewritten as�(t)b̂(t) = q(t) ; (4)where �(t) = [QT (t)Q(t)]1=2R(t)is an upper triangular square matrix and q(t) is a vectorq(t) = [QT (t)Q(t)]�1=2QT (t)�1=2(t)y(t) :Thus, the estimation of the vector b is based on solution of the system(4), which consists of the following steps:1. initialize matrix �(:) and vector q(:)� at time k = 0 set �(0) = � and q(0) = 0� if a new center Nr is allocated at time k 6= 0, increase dimensions of�(k) and q(k) to (Nr + 1)� (Nr + 1) and (Nr + 1), respectively, andset diagonal elements �Nr+1;Nr+1(k) = �=e(k) and qNr+1(k) = �� is a small positive number NPL.tex; 10/03/1999; 17:57; no v.; p.4



Prediction of Chaotic Time-Series with a Resource-Allocating RBF Network 52. at each time j 6= k, update �(j) via �(j) = �0�(j�1)+1��0, the appropriatevalues for �0 and �(0) are just less than one [2, 9]3. at time j 6= k, form the following (Nr + 2) � (Nr + 2) matrix
(j) = 264 �1=2�(j � 1) �1=2q(j � 1)�T (j) y(j) 3754. at time j 6= k, perform sequence of elementary Givens rotations (GR) [8] totransform the matrix 
(j) to upper triangular matrix
(j) = 264 �1=2�(j � 1) �1=2q(j � 1)�T (j) y(j) 375 GR==) 264 �(j) q(j)0 � 375where 0 is 1� (Nr + 1) zeros vector and � is a don't care variable5. at time j 6= k, compute b̂(j) = ��1(j)q(j)The initialization of the matrix �(k) and the vector q(k) (at timek 6= 0) in step 1 of the algorithm is based on solving the system (4).According to Platt's algorithm, we set a new weight bNr(k) = e(k) afterallocating a center Nr, and by solving the equation de�ned by the lastrow of (4) we achieve the proposed initialization.The similar method of weights adaptation, based on extended Kalman�lter (EKF) algorithm, was applied to RANs by Kadirkamanathan andNiranjan [7] and extended with Bayesian approach by McLachlan andLowe [11]. Comparison of algorithms based on described GQRD andEKF can be found in [8].It is known that convergence of GQRD algorithm causes lower adapt-ability of the network to slowly varying non-stationarity of the time-series and to the increase of the order of the network after allocating anew center. To constrain this undesirable e�ect, we re-initialized �(j)to �(0) in the case that a new center was allocated at time j.2.4. Pruning StrategyDue to the fact that the above proposed algorithm does not removeexisting centers whose contribution to prediction accuracy is becom-ing negligible or signi�cantly falling down, the order of the networkcan unsuitably increase without improving performance accuracy ofthe network. To measure the contribution of the individual centers, weused analogy with linear regression model. Billings and Chen [1] pro-posed a criterion to select the most important regressors called error-reduction-ratio (ERR) also used in orthogonal least squares method [3].NPL.tex; 10/03/1999; 17:57; no v.; p.5



6 Roman Rosipal et al.Transforming the columns of matrix � in linear regression model (2)into a set of orthogonal basis vectors [3], we can rewrite (2) intoy = Wg + e ;where W is a t � (Nr + 1) matrix with orthogonal columns wi. Thenthe orthogonal least-squares solution ĝi is given asĝi = wiy(wTi wi) ; 1 � i � Nr + 1 :Because the wi and wj are orthogonal, the desired output variance is1t yTy = 1t Nr+1Xi=1 g2iwTi wi + 1t eTe :Thus, 1t PNr+1i=1 g2iwTi wi represents the part of desired output varianceexplained by the regressors and 1teTe is the unexplained desired outputvariance. The ERR of the i-th regressor is then de�ned asERRi = ĝ2iwTi wiyTy ; 1 � i � Nr + 1 :By examining equation (4), as mentioned in [4], it is obvious thatelements qi(j) of the vector q at time j are directly related to therelative strengths of the existing regressors (in our case centers). Thus,we can write ERR of the i-th center at time j in the formERRi(j) = qi2(j)yTy : (5)A large value of ERRi(j) indicates the signi�cant contribution of thei-th center to the output error and vice versa.In our on-line algorithm, we normalized qi2(j) in (5) by y2(j) insteadof yTy, and used the following idea to monitor the contribution ofindividual centers to prediction accuracy. Let's assume that at time ka new center Nr was allocated. For each center i (1 � i � Nr), at eachtime j, k < j < T < K, we compute number of cases Ci which detectmomentary ERRi decrease, i.e. ERRi(j) � ERRi(j � 1). K denotesthe time instant at which the criteria for allocating a new center aresatis�ed. At time K we prune a center s ifmax1�i�Nr Ci = Cs > �(K � k) ;NPL.tex; 10/03/1999; 17:57; no v.; p.6



Prediction of Chaotic Time-Series with a Resource-Allocating RBF Network 7where 0 � � � 1 is a proportion constant and Cs represents the centerwith the highest number of decreases of the ERR during the time inter-val between two demands for allocating a new center. If the pruningcriterion is not satis�ed, we just allocate a new center.During the experiments, we observed several cases of a short-timeinstability (usually 5-10 time steps) of the GQRD algorithm whichoccurred after pruning a center. This is due to a sudden enormouschange of elements of the matrix �(:) and the vector q(:), which iscaused by pruning a center and adding a new one. To avoid this, weexperimentally found the criterion for initializing the s-th row and s-thcolumn of the matrix �(K) and the s-th element of the vector q(K).After pruning the center Cs at time K, we set the s-th diagonal elementof �(K) to 1=� and other elements of s-th row and s-th column we setto zero. The s-th element of the vector q(K) is set to �. In both cases,� is the same small positive number as in step 1 of the algorithm insection 2.3.2.5. Time-Series PredictionThe proposed approach was applied to prediction of chaotic Mackey-Glass time series de�ned by di�erential delay equationds(t)dt = �bs(t) + a s(t� �)1 + s(t � �)10with a = 0:2, b = 0:1. We used the �rst 3103 data points (training part)of data set available from CMU Learning Benchmark Archive 2. Thenetwork was trained to predict the value at time t + 85, from inputsat time t, t � 6, t � 12, and t � 18. The following network parameterswere used: �max = 0:7, �min = 0:07,  = 0:999, �(0) = 0:9, �0 = 0:99,� = 0:05, � = 10�5. We used several combinations of the parameters�, �, T , � (Table I). The smaller value of � causes allocation of thehigher number of centers, so we can decrease the widths of the centers(by parameter �) and \soften" the criterion for pruning centers (byparameter �) . In our experiments, we did not allow pruning of thecenters during the �rst 1000 time-steps.To compare our results with those reported by Platt, we construct-ed a RAN with the same methodology as described in [12]. We usedGaussian transfer function instead of Platt's function approximationand Platt's strategy of � decay so that � decreases to �min at the end2 http://legend.gwydion.cs.cmu.edu/neural-bench/benchmarks/mackey-glass.html.These data were generated with � = 17 and using a second-order Runge-Kuttamethod with a step size 0.1. NPL.tex; 10/03/1999; 17:57; no v.; p.7



8 Roman Rosipal et al.Table I. Combinations of the parametersvalues used in experiments.� � T �0.1 2.0 30 0.80.05 2.0 30 0.80.02 1.75 30 0.750.01 1.5 40 0.75of learning process. The widths of the centers were de�ned in the sameway as in Platt's approach. 3. ResultsThe quality of prediction was evaluated in terms of number of centers(NC) and normalized root mean squared error (NRMSE) de�ned asNRMSE(j) =vuutPji=1(y(i)� ŷ(i))2Pji=1(y(i)� �y(i))2 ; �y(j) = 1j jXi=1 y(i) :We compared our two modi�cations of RAN { RAN using GivensQR decomposition (RAN-GQRD) and RAN using pruning and GQRD(RAN-P-GQRD) { with algorithm proposed by Platt (RAN). The resultsachieved at the end of iterative learning are summarized in Table II.One can see, that by using RAN-GQRD network NRMSE decreasedby 50% on average compared to RAN. Moreover, improvement wasobtained also in terms of NC which signi�cantly decreased (4 times onaverage).For the case of � = 0:05 we also present three characteristics (NC,NRMSE and WPE which is de�ned below) of the iterative learningprocess.Figure 1 displays the NC. It can be observed that, during the �rsthalf of the learning process, the NC was approximately equal for bothapproaches. In the later stages, RAN allocated new centers more rapid-ly and �nal NC was approximately 3.5 times greater than in the caseof RAN-GQRD.In Figure 2, the dependence of NRMSE on number of observationsis depicted. During the whole learning process, RAN-GQRD was con-sistently better than RAN.The third measure { exponentially weighted prediction error (WPE){ was proposed by Kadirkamanathan & Niranjan [7]. It representsNPL.tex; 10/03/1999; 17:57; no v.; p.8



Prediction of Chaotic Time-Series with a Resource-Allocating RBF Network 9Table II. Comparison of achieved results of RAN, RAN-GQRD and RAN-P-GQRD algorithms for various values of�. RAN RAN-GQRD RAN-P-GQRD� NC NRMSE NC NRMSE NC NRMSE0.1 57 0.378 14 0.206 14 0.2060.05 92 0.376 24 0.170 24 0.1740.02 113 0.373 44 0.172 31 0.1600.01 123 0.374 50 0.165 38 0.183the prediction performance of the network which continually adaptsto incoming data. WPE, at time j, can be recursively computed asWPE(j)2 = #WPE(j � 1)2 + (1� #) je(j)j2for some 0 < # < 1. We used the same # = 0:95 as in [7]. From theFigure 3 it is apparent that also in terms of WPE, RAN-GQRD wassigni�cantly better than RAN (on average 2 times smaller WPE).To evaluate the signi�cance of the pruning strategy, we compared theperformance of RAN-GQRD and RAN-P-GQRD networks for � = 0:01.By using the pruning strategy we achieved similar prediction perfor-mance as with GQRD network (Fig. 5 and Fig. 6), but the �nal numberof centers was 1.3 times smaller (Fig. 4). The high peaks of WPE andsmall increases of NRMSE reect the short-time numerical instabilityof the GQRD algorithm, which occurs after pruning.4. ConclusionsIn this paper we report about a new method for constructing RANs.Developed networks were applied to chaotic time-series prediction. Hav-ing used NRMSE and NC as criteria for model evaluation, we foundout that our modi�cations using GQRD method provided results thatwere superior to results achieved by Platt's algorithm.We introduced a strategy for pruning centers with low or decreasingcontribution to prediction accuracy of the network. The results achievedwith this modi�cation in on-line prediction task were similar to the bestresults we got without pruning, but the number of allocated centers wassmaller.We think that the presented approach leads to on-line constructionof neural network models with optimal (or near optimal) complexityand preserved prediction performance.NPL.tex; 10/03/1999; 17:57; no v.; p.9
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Figure 1. Growth of RAN and RAN-GQRD during the learning process (� = 0:05).
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Figure 2. Prediction accuracy of RAN and RAN-GQRD in terms of NRMSE (� =0:05)
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Figure 3. Prediction accuracy of RAN and RAN-GQRD in terms of WPE (� = 0:05)NPL.tex; 10/03/1999; 17:57; no v.; p.11
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Figure 4. Growth of RAN-GQRD and RAN-P-GQRD during the learning process(� = 0:01).
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Figure 5. Prediction accuracy of RAN-GQRD and RAN-P-GQRD in terms ofNRMSE (� = 0:01)
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Figure 6. Prediction accuracy of RAN-GQRD and RAN-P-GQRD in terms of WPE(� = 0:01) NPL.tex; 10/03/1999; 17:57; no v.; p.12


