

Overview and Some Aspects of Partial Least Squares

Roman Rosipal

Austrian Research Institute for Artificial Intelligence Vienna, Austria

(in collaboration with Leonard J. Trejo from NASA Ames Research Center, CA)

- 1. History of PLS
- 2. Review of PLS and its Modifications
- 3. PLS Regression
- 4. "The Peculiar Shrinkage Properties" of PLS Regression
- 5. PLS for Discrimination/Classification
- 6. Experimental Results

History of Partial Least Squares

- PLS a class of techniques for modeling relations between blocks of observed variables by means of latent variables
- Herman Wold'66,'75 NIPALS to linearize models nonlinear in the parameters
- Svante Wold et. al '83 NIPALS extended for the overdetermined regression problems PLS Regression
- Chemometrics strong latent variable structure
- Math. Statistics Stone & Brooks'90, Frank & Friedman'93, Garthwaite'94, Breiman & Friedman'97, etc.

- fMRI data
 - McIntosh et. al '96, Worsley'97, Nielsen et. al '98
- EEG, ERP data
 - Lobaugh et.al '01
 - Rosipal & Trejo'01 nonlinear kernel PLS
- other applications
 - classification of microarray gene expression profiles (Nguyen & Rocke'02)
 - drug design
 - (Bennett et. al '02,'03)
 - music data

(Saunders et. al '04)

Partial Least Squares

- data sets:
 - $\mathbf{X} \ (n_{objects} \times N_{variables}) \\ \mathbf{Y} \ (n_{objects} \times M_{responses}) \\ zero-mean$
- bilinear decomposition:

$$\mathbf{X} = \mathbf{T}\mathbf{P}^T + \mathbf{E}$$
$$\mathbf{Y} = \mathbf{U}\mathbf{Q}^T + \mathbf{F}$$

where:

- \mathbf{T}, \mathbf{U} matrix of score vectors (LV, components)
- \mathbf{P},\mathbf{Q} matrix of loadings
- \mathbf{E}, \mathbf{F} matrix of residuals (errors)

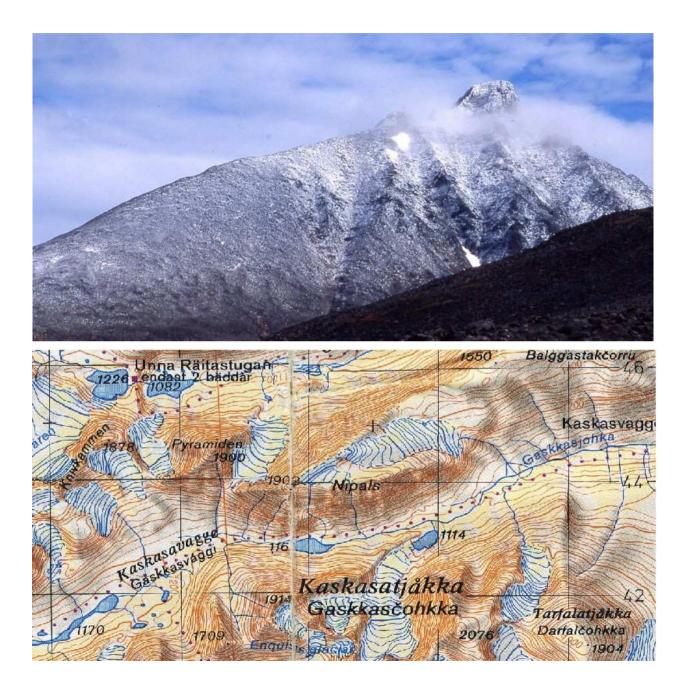
• PLS - bilinear decomposition of ${\bf X}$ and ${\bf Y}$ maximizing covariance between score vectors ${\bf t}={\bf X}{\bf w}$ and ${\bf u}={\bf Y}{\bf c}$

$$\begin{aligned} \max_{|\mathbf{r}|=|\mathbf{s}|=1} [cov(\mathbf{Xr}, \mathbf{Ys})]^2 &= [cov(\mathbf{Xw}, \mathbf{Yc})]^2 \\ &= var(\mathbf{Xw}) [corr(\mathbf{Xw}, \mathbf{Yc})]^2 var(\mathbf{Yc}) \\ &= [cov(\mathbf{t}, \mathbf{u})]^2 \end{aligned}$$

• NIPALS algorithm finds the weights \mathbf{w}, \mathbf{c} :

1)
$$\mathbf{w} = \mathbf{X}^T \mathbf{u} / (\mathbf{u}^T \mathbf{u})$$
 4) $\mathbf{c} = \mathbf{Y}^T \mathbf{t} / (\mathbf{t}^T \mathbf{t})$
2) $\|\mathbf{w}\| \to 1$ 5) $\|\mathbf{c}\| \to 1$
3) $\mathbf{t} = \mathbf{X}\mathbf{w}$ 6) $\mathbf{u} = \mathbf{Y}\mathbf{c}$
7) go to 1)

•
$$\mathbf{p} = \mathbf{X}^T \mathbf{t} / (\mathbf{t}^T \mathbf{t})$$
; $\mathbf{q} = \mathbf{Y}^T \mathbf{u} / (\mathbf{u}^T \mathbf{u})$



• instead of NIPALS we can solve an eigenproblem:

$$\mathbf{w} \propto \mathbf{X}^{T} \mathbf{u} \propto \mathbf{X}^{T} \mathbf{Y} \mathbf{c} \propto \mathbf{X}^{T} \mathbf{Y} \mathbf{Y}^{T} \mathbf{t} \propto \mathbf{X}^{T} \mathbf{Y} \mathbf{Y}^{T} \mathbf{X} \mathbf{w}$$
$$\begin{bmatrix} \mathbf{X}^{T} \mathbf{Y} \mathbf{Y}^{T} \mathbf{X} \mathbf{w} = \lambda \mathbf{w} \\ \mathbf{t} = \mathbf{X} \mathbf{w} \end{bmatrix} \text{ or } \begin{bmatrix} \mathbf{X} \mathbf{X}^{T} \mathbf{Y} \mathbf{Y}^{T} \mathbf{t} = \lambda \mathbf{t} \\ \mathbf{u} = \mathbf{Y} \mathbf{Y}^{T} \mathbf{t} \end{bmatrix}$$

sequential extraction of
$$\{\mathbf{t}_i\}_{i=1}^m$$

 $\mathbf{X}_0 = \mathbf{X}$
 $\mathbf{t}_i = \mathbf{X}_{i-1}\mathbf{w}_i$, $\mathbf{X}_i = \mathbf{X}_{i-1} - \mathbf{t}_i\mathbf{p}_i^T = \mathbf{X} - \sum_{j=1}^i \mathbf{t}_j\mathbf{p}_j^T$

 $\mathbf{t} = \mathbf{X}\mathbf{w}$

• deflation schemes define different forms of PLS

Forms of Partial Least Squares

• PLS1, PLS2: rank-one approximation of \mathbf{X}, \mathbf{Y} with a score vector \mathbf{t} and vector of loadings \mathbf{p}, \mathbf{q}

-
$$\mathbf{X}
ightarrow \mathbf{X} - \mathbf{t} \mathbf{p}^T$$
 ; $\mathbf{Y}
ightarrow \mathbf{Y} - \mathbf{t} \mathbf{c}^T$

- mutually orthogonal score vectors \mathbf{t}_i , $i=1,\ldots,m$
- 1st $SV_{i+1} \ge 2nd SV_i \rightarrow select$ one score vector at a time
- PLS Mode A: rank-one approximation of \mathbf{X}, \mathbf{Y} with score vectors \mathbf{t}, \mathbf{u} and vector of loadings \mathbf{p}, \mathbf{q}

-
$$\mathbf{X}
ightarrow \mathbf{X} - \mathbf{t} \mathbf{p}^T$$
 ; $\mathbf{Y}
ightarrow \mathbf{Y} - \mathbf{u} \mathbf{q}^T$

- mutually orthogonal score vectors $\mathbf{t}_i, \mathbf{u}_i, i = 1, \dots, m$

- PLS-SB: SVD of $\mathbf{Y}^T \mathbf{X} = \mathbf{A} \mathbf{\Sigma} \mathbf{B}^T$
 - $\mathbf{Y}^T \mathbf{X} \rightarrow \mathbf{Y}^T \mathbf{X} \sigma \mathbf{a} \mathbf{b}^T$
 - mutually orthogonal weight vectors $\mathbf{a}_i, \mathbf{b}_i$
 - generally not orthogonal score vectors $\mathbf{c}_i = \mathbf{X} \mathbf{a}_i$, $\mathbf{d}_i = \mathbf{Y} \mathbf{b}_i$
- **SIMPLS** :(de Jong'93)
 - avoids deflation of ${\bf X};$ i.e. finds weight vectors $\tilde{{\bf w}}_i$ such that $\tilde{{\bf T}}={\bf X}_0\tilde{{\bf W}}$
 - SVD of $\mathbf{X}_0^T \mathbf{Y}_0$ + constraint of mutually orthogonal $\mathbf{ ilde{t}}_i$
 - sequence of SVD problems $\tilde{\mathbf{P}}_i^{\perp} \mathbf{X}_0^T \mathbf{Y}_0$ $\tilde{\mathbf{P}}_i^{\perp}$ an orthogonal projector onto $\tilde{\mathbf{P}}_i = [\tilde{\mathbf{p}}_1, \dots, \tilde{\mathbf{p}}_i]$ where $\tilde{\mathbf{p}}_i = \mathbf{X}_0^T \tilde{\mathbf{t}}_i / (\tilde{\mathbf{t}}_i^T \tilde{\mathbf{t}}_i)$ are loadings vectors
 - same as PLS1 but differs for PLS2
- Hinkel & Rayens'98-00; Frank & Friedman'93:
 - constraint maximization of covariance

CCA, **PLS**, and **PCA** \rightleftharpoons **CR**

• PLS:

$$\max_{|\mathbf{r}|=|\mathbf{s}|=1} [cov(\mathbf{Xr}, \mathbf{Ys})]^2 = \max_{|\mathbf{r}|=|\mathbf{s}|=1} var(\mathbf{Xr}) [corr(\mathbf{Xr}, \mathbf{Ys})]^2 var(\mathbf{Ys})$$

• CCA:

$$\max_{|\mathbf{r}|=|\mathbf{s}|=1} [corr(\mathbf{Xr}, \mathbf{Ys})]^2$$

• PCA:

 $\max_{|\mathbf{r}|=1}[var(\mathbf{Xr})]$

Canonical Ridge Analysis - $CCA \rightleftharpoons PLS$

$$([1 - \gamma_X]\mathbf{X}^T\mathbf{X} + \gamma_X\mathbf{I})^{-1}\mathbf{X}^T\mathbf{Y}([1 - \gamma_Y]\mathbf{Y}^T\mathbf{Y} + \gamma_Y\mathbf{I})^{-1}\mathbf{Y}^T\mathbf{X}\mathbf{w} = \lambda\mathbf{w}$$

• CCA:
$$\gamma_X = 0, \ \gamma_Y = 0$$

• PLS:
$$\gamma_X = 1, \ \gamma_Y = 1$$

- Orthonormalized PLS: $\gamma_X = 1, \ \gamma_Y = 0$ or $\gamma_X = 0, \ \gamma_Y = 1$
- Ridge Regression, Regularized FDA or CCA: $\gamma_X \in (0,1), \ \mathbf{Y} \in \mathcal{R}$

- assume: (i) T are good predictors of Y

 (ii) the *inner loop* relation U = T + H ; i.e.
 Y is a linear function of T
 H matrix of residuals (errors)
- linear PLS regression model:

 $\mathbf{Y} = \mathbf{T}\mathbf{C}^T + \mathbf{F}^* = \mathbf{X}\mathbf{B} + \mathbf{F}^*$, \mathbf{F}^* matrix of residuals (errors)

•
$$\mathbf{T} = \mathbf{X}\mathbf{W}^* = \mathbf{X}\mathbf{W}(\mathbf{P}^T\mathbf{W})^{-1}$$

•
$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{W}(\mathbf{P}^T\mathbf{W})^{-1}\mathbf{C}^T = \mathbf{X}\mathbf{B}$$

•
$$\hat{\mathbf{Y}} = \mathbf{X}\mathbf{W}(\mathbf{P}^T\mathbf{W})^{-1}\mathbf{C}^T = \mathbf{X}\mathbf{B}$$

- using the existing relations among $\mathbf{t}, \mathbf{u}, \mathbf{c}, \mathbf{w}$: $\mathbf{B} = \mathbf{X}^T \mathbf{U} (\mathbf{T}^T \mathbf{X} \mathbf{X}^T \mathbf{U})^{-1} \mathbf{T}^T \mathbf{Y}$
- train data: $\hat{\mathbf{Y}} = \mathbf{X}\mathbf{X}^T\mathbf{U}(\mathbf{T}^T\mathbf{X}\mathbf{X}^T\mathbf{U})^{-1}\mathbf{T}^T\mathbf{Y} = \mathbf{T}\mathbf{T}^T\mathbf{Y} = \mathbf{T}\mathbf{C}^T$ single output: $\hat{y}(\mathbf{x}) = c_1t_1(\mathbf{x}) + c_2t_2(\mathbf{x}) + \ldots + c_mt_m(\mathbf{x})$
- test data:

 $\hat{\mathbf{Y}}_t = \mathbf{X}_t \mathbf{X}^T \mathbf{U} (\mathbf{T}^T \mathbf{X} \mathbf{X}^T \mathbf{U})^{-1} \mathbf{T}^T \mathbf{Y} = \mathbf{T}_t \mathbf{C}^T$

$PLS1 \rightleftharpoons Lanczos Method$

- $\mathbf{b}_{PLS}^{(m)} = \mathbf{R}^{(m)} [(\mathbf{R}^{(m)})^T \mathbf{X}^T \mathbf{X} \mathbf{R}^{(m)}]^{-1} (\mathbf{R}^{(m)})^T \mathbf{X}^T \mathbf{y}$
- $\mathbf{R}^{(m)}$ a matrix with orthonormal columns spanning Krylov space $\mathcal{K}^{(m)} = span\{\mathbf{X}^T\mathbf{y}, (\mathbf{X}^T\mathbf{X})\mathbf{X}^T\mathbf{y}, \dots, (\mathbf{X}^T\mathbf{X})^{m-1}\mathbf{X}^T\mathbf{y}\}$ $\mathbf{W}^{(m)} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m]$ is such a candidate
- $\mathbf{Z}^{(m)} = (\mathbf{R}^{(m)})^T \mathbf{X}^T \mathbf{X} \mathbf{R}^{(m)}$ is a tridiagonal matrix
- Lanczos method approximate extremal eigenvalues of $\mathbf{X}^T \mathbf{X}$ by constructing a sequence of $\mathbf{Z}^{(m)}$; columns of $\mathbf{R}^{(m)}$ are given by a Gram-Schimdt orthonormalization of the first mcolumns of $\mathcal{K}^{(m)}$

- CG solves a system of linear equations $\mathbf{A}\mathbf{f} = \mathbf{g}$ by minimization of the quadratic form $\frac{1}{2}\mathbf{f}^T\mathbf{A}\mathbf{f} - \mathbf{g}^T\mathbf{f}$ (A positive semidefinite)
- for any f_0 , the sequence f_j , iterates to the solution $f = A^-g$ in p = rank(A) steps
- the connection between CG and Lanczos method known (Hestens & Stiefel'52; Lanczos'50)

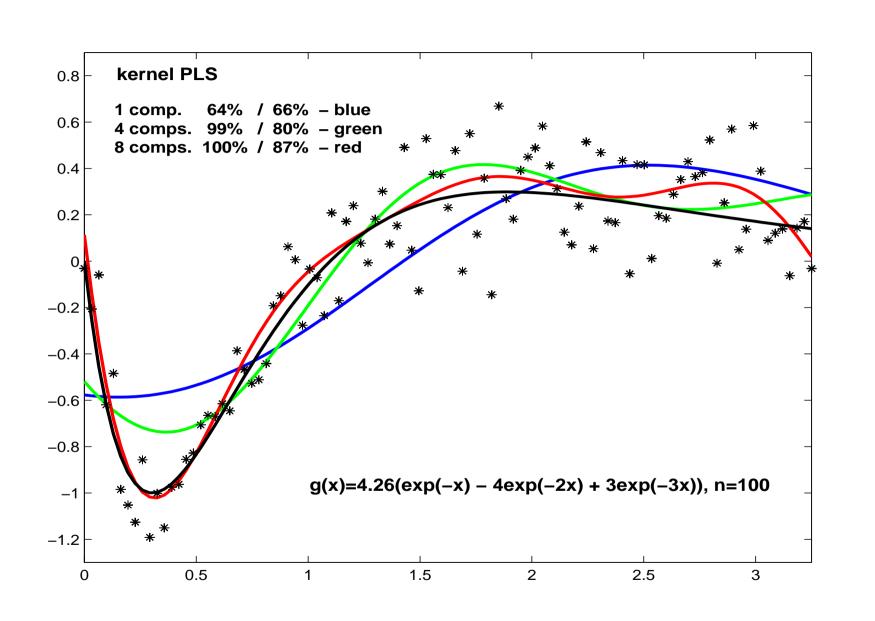
• if
$$\mathbf{A} = \mathbf{X}^T \mathbf{X}$$
; $\mathbf{g} = \mathbf{X}^T \mathbf{y} \& \mathbf{f}_0 = \mathbf{0}$ then $\mathbf{b}_{PLS}^{(m)} \rightleftharpoons \mathbf{f}_m$

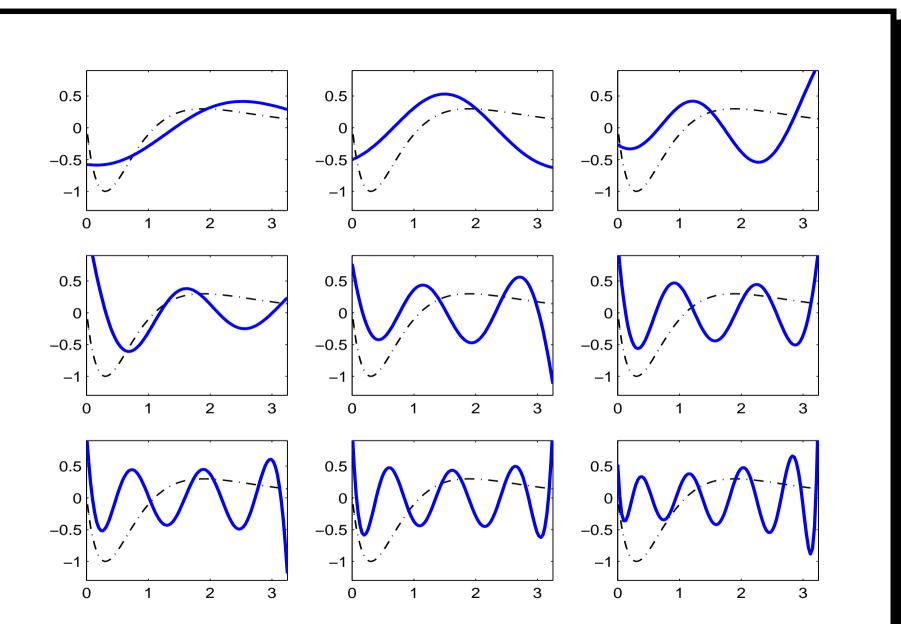
Kernel PLS Regression

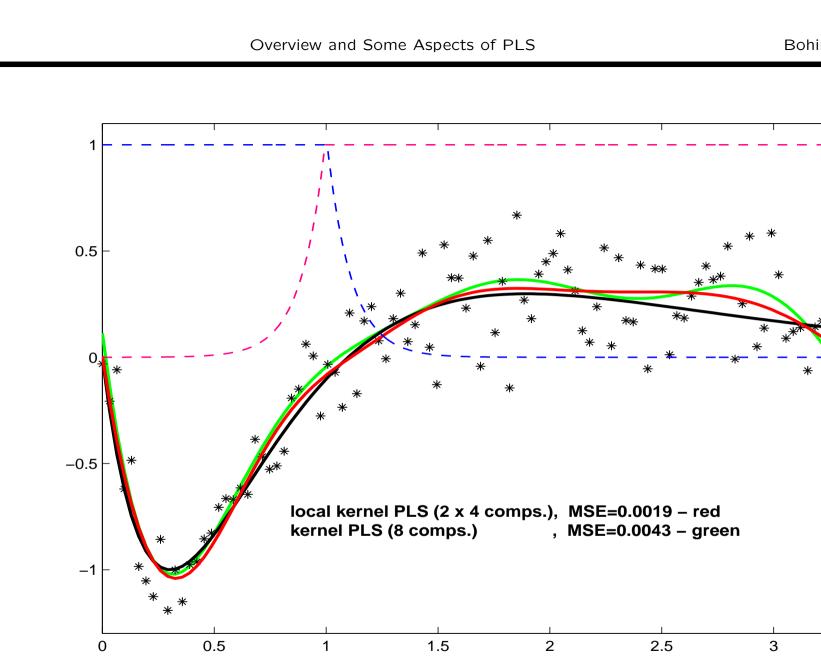
- \bullet linear PLS regression in a feature space ${\cal F}$
- kernel trick: $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$ where $\mathbf{\Phi}$ is the $(n \times L)$ matrix of the mapped input data: $\Phi : \mathbf{x} \to \mathbf{\Phi}(\mathbf{x}) \in \mathcal{F}$
- nonlinear kernel-based PLS: $\mathbf{X}\mathbf{X}^T\mathbf{Y}\mathbf{Y}^T\mathbf{t} = \lambda\mathbf{t} \Rightarrow \mathbf{K}\mathbf{Y}\mathbf{Y}^T\mathbf{t} = \lambda\mathbf{t}$ $\mathbf{u} = \mathbf{Y}\mathbf{Y}^T\mathbf{t}$

or

iterative kernel-based NIPALS algorithm







ÖFA

Bohinj, February 2005

"The Peculiar Shrinkage Properties" of PLS1

(Frank & Friedman'93, Butler & Denham'00, Lingjaerde & Christophersen'00, Krämer'04)

• assume:
$$y = Xb + \epsilon$$

y an $(n \times 1)$ response vector X an $(n \times N)$ design matrix b an unknown $(N \times 1)$ parameter vector ϵ an $(n \times 1)$ vector of noise, iid elements $\sim \mathcal{N}(0, \sigma^2)$ y,X centered, i.e. $\mathbf{1}_n^T \mathbf{Y} = 0$ and $\mathbf{1}_n^T \mathbf{X} = \mathbf{0}_N$, $rank(\mathbf{X}) = p \le \min(n - 1, N)$ svd(X) = UDV^T; δ_i - singular values $\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T = \sum_{i=1}^p \lambda_i \mathbf{v}_i \mathbf{v}_i^T$, $\lambda_i = \delta_i^2$

Ordinary Least Squares (OLS)

- $min_{\mathbf{b}} \|\mathbf{y} \mathbf{X}\mathbf{b}\|_{2} \Longrightarrow \hat{\mathbf{b}}_{OLS} = (\mathbf{X}^{T}\mathbf{X})^{-}\mathbf{X}^{T}\mathbf{Y} = \mathbf{V}\mathbf{\Lambda}^{-1/2}\mathbf{U}^{T}\mathbf{Y}$ $\hat{\mathbf{b}}_{OLS} = \sum_{i=1}^{p} \lambda_{i}^{-1/2} (\mathbf{u}_{i}^{T}\mathbf{y})\mathbf{v}_{i} = \sum_{i=1}^{p} \hat{\mathbf{b}}_{i}$
- $\hat{\mathbf{b}}_{OLS}$ belongs to the class of linear estimators $\hat{\mathbf{z}} = \mathbf{L}\mathbf{y}$ $E(\hat{\mathbf{z}}) = \mathbf{L}\mathbf{X}\mathbf{z}$ $var(\hat{\mathbf{z}}) = \sigma^2 trace(\mathbf{L}\mathbf{L}^T)$
- $E(\hat{\mathbf{b}}_{OLS}) = \mathbf{b}$ $var(\hat{\mathbf{b}}_{OLS}) = E[(\hat{\mathbf{b}}_{OLS} - \mathbf{b})^T (\hat{\mathbf{b}}_{OLS} - \mathbf{b})] = \sigma^2 trace(\mathbf{X}^T \mathbf{X})^- =$ $= \sigma^2 \sum_{i=1}^m \frac{1}{\lambda_i}$
- $MSE(\hat{\mathbf{z}}) = (E(\hat{\mathbf{z}}) \mathbf{z})^T (E(\hat{\mathbf{z}}) \mathbf{z}) + E[(\hat{\mathbf{z}} E(\hat{\mathbf{z}}))^T (\hat{\mathbf{z}} E(\hat{\mathbf{z}}))]$ $\equiv bias^2(\hat{\mathbf{z}}) + var(\hat{\mathbf{z}})$
- if $\|\mathbf{\hat{z}}_1\|_2 \le \|\mathbf{\hat{z}}_2\|_2 \Rightarrow var(\mathbf{\hat{z}}_1) \le var(\mathbf{\hat{z}}_2)$

Shrinkage Estimators

•
$$\hat{\mathbf{b}}_{shr} = \sum_{i=1}^{p} f(\lambda_i) \lambda_i^{-1/2} (\mathbf{u}_i^T \mathbf{y}) \mathbf{v}_i = \sum_{i=1}^{p} f(\lambda_i) \hat{\mathbf{b}}_i$$

 $\hat{\mathbf{b}}_i$ -the component of $\hat{\mathbf{b}}_{OLS}$ along \mathbf{v}_i

• linear shrinkage estimators

ÖFA

$$MSE(\hat{\mathbf{b}}_{shr}) = \sum_{i=1}^{p} (f(\lambda_i) - 1)^2 (\mathbf{v}_i^T \mathbf{b})^2 + \sigma^2 \sum_{i=1}^{p} f(\lambda_i)^2 / \lambda_i$$

(Generalized) Ridge Regression

$$f(\lambda_i) = \frac{\lambda_i}{\lambda_i + \gamma_i}$$
, γ_i – regularization term along \mathbf{v}_i

Principal Components Regression (PCR)

$$f(\lambda_i) = \begin{cases} 1 & : \text{ principal component along } \mathbf{v}_i \text{ included} \\ 0 & : \text{ otherwise} \end{cases}$$

PLS Regression (PLS1)

•
$$\hat{\mathbf{b}}_{PLS}^{(m)} = \sum_{i=1}^{p} f^{(m)}(\lambda_i) \hat{\mathbf{b}}_i$$

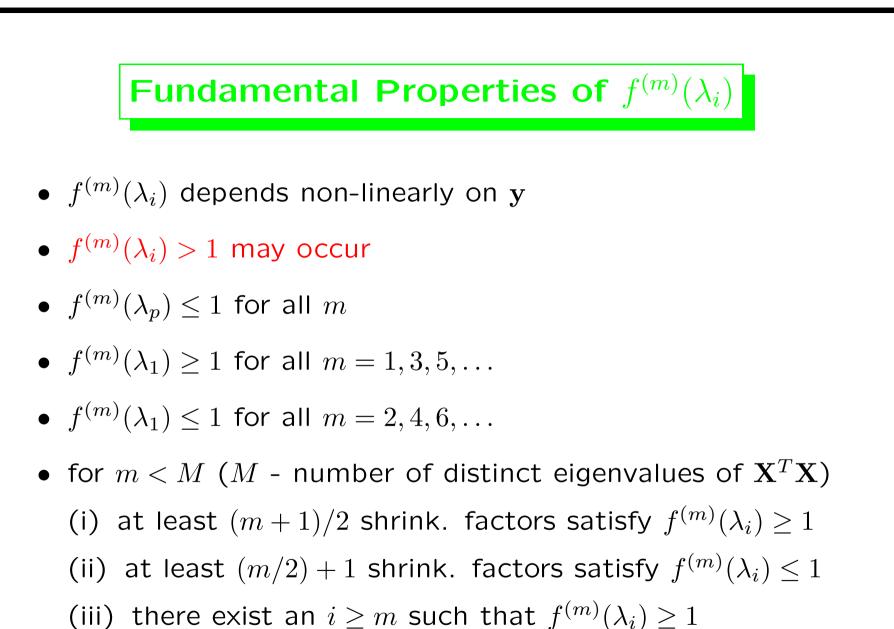
- $\hat{\mathbf{b}}_{PLS}^{(m)}$ is not a linear estimator
- PLS shrinks: $\|\hat{\mathbf{b}}_{PLS}^{(1)}\|_2 \le \|\hat{\mathbf{b}}_{PLS}^{(2)}\|_2 \le \ldots \le \|\hat{\mathbf{b}}_{PLS}^{(p)}\|_2 = \|\hat{\mathbf{b}}_{OLS}\|_2$
- PLS fits closer to OLS then PCR: $\begin{aligned} \mathcal{R}^2(\mathbf{\hat{y}}_{OLS}, \mathbf{\hat{y}}_{PLS}^{(m)}) \geq \mathcal{R}^2(\mathbf{\hat{y}}_{OLS}, \mathbf{\hat{y}}_{PCR}^{(m)}) \\ (\mathcal{R}^2(.,.) \text{ - squared correlation}) \end{aligned}$

PLS Shrinkage Factors $f^{(m)}(\lambda_i)$

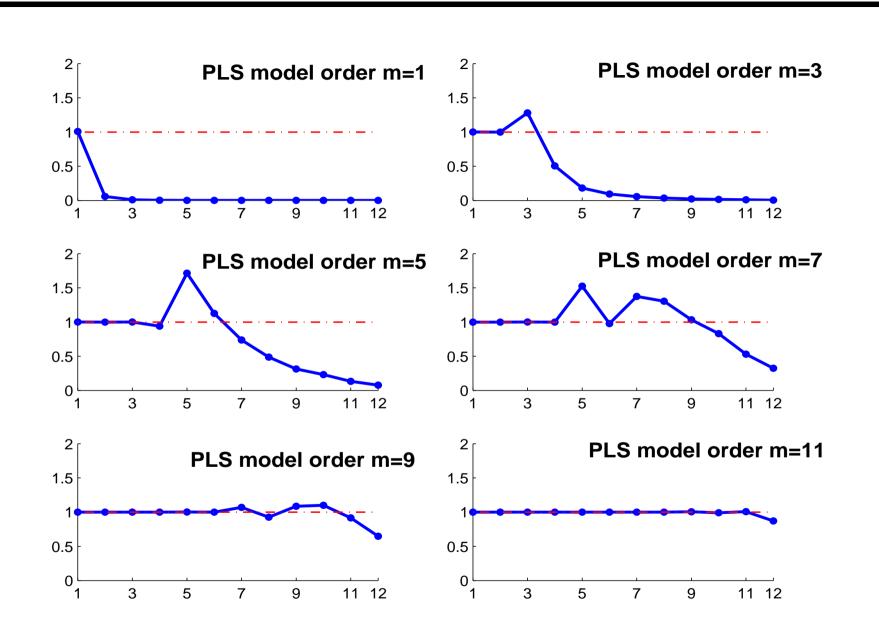
$$f^{(m)}(\lambda_i) = 1 - \prod_{j=1}^m (1 - \frac{\lambda_i}{\mu_j^{(m)}}), \ i = 1, \dots, p$$

 $\mu_1^{(m)} \ge \ldots \ge \mu_m^{(m)}$ the eigenvalues (Ritz values) of $(\mathbf{R}^{(m)})^T \mathbf{X}^T \mathbf{X} \mathbf{R}^{(m)}$

• $\mathbf{R}^{(m)}$ - a matrix with orthonormal columns spanning Krylov space $\mathcal{K}^{(m)} = span\{\mathbf{X}^T\mathbf{y}, (\mathbf{X}^T\mathbf{X})\mathbf{X}^T\mathbf{y}, \dots, (\mathbf{X}^T\mathbf{X})^{m-1}\mathbf{X}^T\mathbf{y}\}$ $\mathbf{W}^{(m)} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m]$ is such a candidate



ÖFA



Multiple Multivariate PLS Regression

- prediction when a high degree of correlation among the variables in both the predictor and response spaces exist
- PLS2 is inherently designed to deal with several response variables, however, almost none theoretical understanding of the properties of such model exist
- the curds & whey procedure (C&W) (Breiman & Friedman'97): the use of CCA between predictors and responses to decorrelate response variables ⇒ univariate (shrinkage) regression on decorrelated responses
- experimental evidence exists that C&W in the PLS2 framework may improve prediction accuracies (Xu & Massart'03)

- $\mathbf{t} = \mathbf{X}\mathbf{w}$; explained variance (fit) associated with t is $r^2 = (\mathbf{y}^T \mathbf{t})^2 / (\mathbf{t}^T \mathbf{t})$
- let $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2]$ and weight vector $\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2]$: $(\mathbf{y}^T \mathbf{t})^2 = ((\mathbf{y}^T \mathbf{X}_1 \mathbf{w}_1) + (\mathbf{y}^T \mathbf{X}_2 \mathbf{w}_2))$ $\mathbf{t}^T \mathbf{t} = \mathbf{w}_1^T \mathbf{X}_1^T \mathbf{X}_1 \mathbf{w}_1 + 2\mathbf{w}_2^T \mathbf{X}_2^T \mathbf{X}_1 \mathbf{w}_1 + \mathbf{w}_2^T \mathbf{X}_2^T \mathbf{X}_2 \mathbf{w}_2$
- problem: large $(\mathbf{w}_2^T \mathbf{X}_2^T \mathbf{X}_2 \mathbf{w}_2)$ can spoil good fit given by large $(\mathbf{y}^T \mathbf{X}_1 \mathbf{w}_1)$; e.g large amount of small components in \mathbf{w}
- (i) compute ${\bf w}$ using ${\bf X}$
 - (ii) sort \mathbf{x}_i using $abs(\mathbf{w})$

(iii) compute r^2 and/or cross-validate sub-models

(iv) compute new PLS model (w,t, ...) using selected \mathbf{x}_i

PLS Discrimination/Classification

Orthonormalized PLS

$$\tilde{\mathbf{Y}} = \mathbf{Y} (\mathbf{Y}^T \mathbf{Y})^{-1/2}$$
$$\tilde{\mathbf{Y}}^T \tilde{\mathbf{Y}} = \mathbf{I}$$

Orthonormalized PLS vs. CCA, Fisher's LDA

• orthonormalized PLS $\max_{|\mathbf{r}|=|\mathbf{s}|=1} [cov(\mathbf{Xr}, \mathbf{\tilde{Ys}})]^2 = var(\mathbf{Xw})[corr(\mathbf{Xw}, \mathbf{\tilde{Yc}})]^2$ $\mathbf{X}^T \mathbf{\tilde{Y}} \mathbf{\tilde{Y}}^T \mathbf{Xw} = \lambda \mathbf{w}$

$$\begin{split} \mathbf{X}^T \mathbf{Y} (\mathbf{Y}^T \mathbf{Y})^{-1} \mathbf{Y}^T \mathbf{X} \mathbf{w} &= \lambda \mathbf{w} \\ \mathbf{H} \mathbf{w} &= \lambda \mathbf{w} \end{split}$$

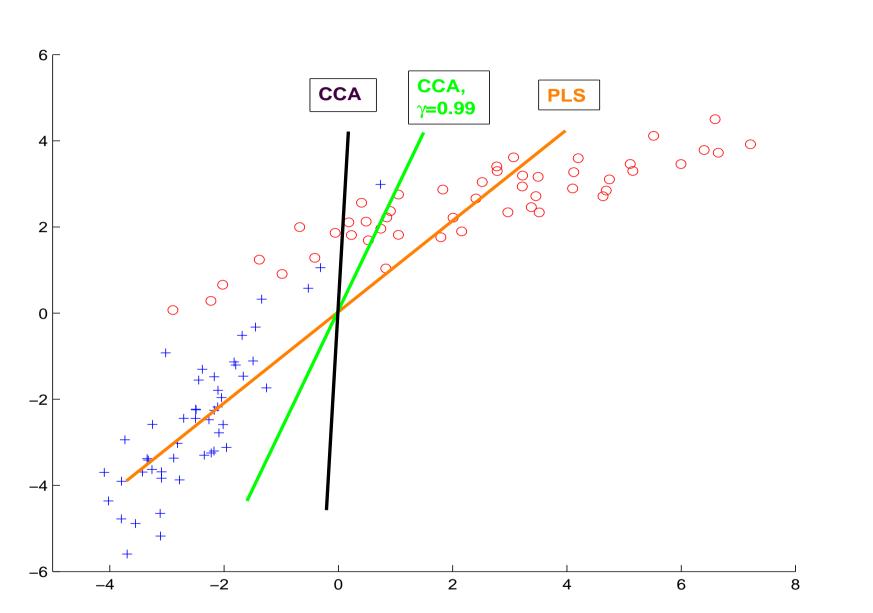
• CCA, Fisher's LDA $\max_{|\mathbf{r}|=|\mathbf{s}|=1} [corr(\mathbf{Xr}, \mathbf{Ys})]^2 = [corr(\mathbf{Xa}, \mathbf{Yb})]^2$ $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} (\mathbf{Y}^T \mathbf{Y})^{-1} \mathbf{Y}^T \mathbf{Xa} = \lambda \mathbf{a}$ $\mathbf{E}^{-1} \mathbf{Ha} = \frac{\lambda}{1-\lambda} \mathbf{a}$ Canonical Ridge Analysis - $CCA \rightleftharpoons PLS$

$$([1 - \gamma_X]\mathbf{X}^T\mathbf{X} + \gamma_X\mathbf{I})^{-1}\mathbf{X}^T\mathbf{Y}([1 - \gamma_Y]\mathbf{Y}^T\mathbf{Y} + \gamma_X\mathbf{I})^{-1}\mathbf{Y}^T\mathbf{X}\mathbf{w} = \lambda\mathbf{w}$$

• CCA:
$$\gamma_X = 0, \ \gamma_Y = 0$$

• PLS:
$$\gamma_X = 1, \ \gamma_Y = 1$$

- Orthonormalized PLS: $\gamma_X = 1, \ \gamma_Y = 0$ or $\gamma_X = 0, \ \gamma_Y = 1$
- Ridge Regression, Regularized FDA or CCA: $\gamma_X \in (0,1), \ \mathbf{Y} \in \mathcal{R}$



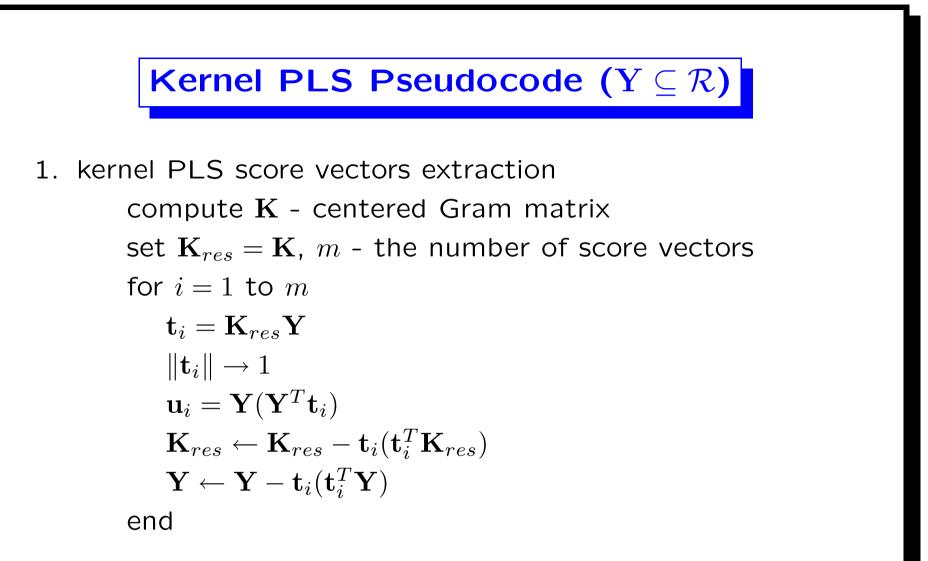
Kernel PLS Discrimination

- \bullet linear PLS discrimination in a feature space ${\cal F}$
- nonlinear kernel-based orthonormalized PLS:

 $\mathbf{K}\mathbf{Y}(\mathbf{Y}^T\mathbf{Y})^{-1}\mathbf{Y}^T\mathbf{t} = \mathbf{K}\tilde{\mathbf{Y}}\tilde{\mathbf{Y}}^T\mathbf{t} = \lambda\mathbf{t}$ $\tilde{\mathbf{Y}} = \mathbf{Y}(\mathbf{Y}^T\mathbf{Y})^{-1/2}$

Kernel PLS-SVC Classification

- orthonormalized kernel PLS + SVC (KPLS-SVC)
- orthonormalized kernel PLS can be combined with other existing classifiers (e.g. LDA, logistic regression)

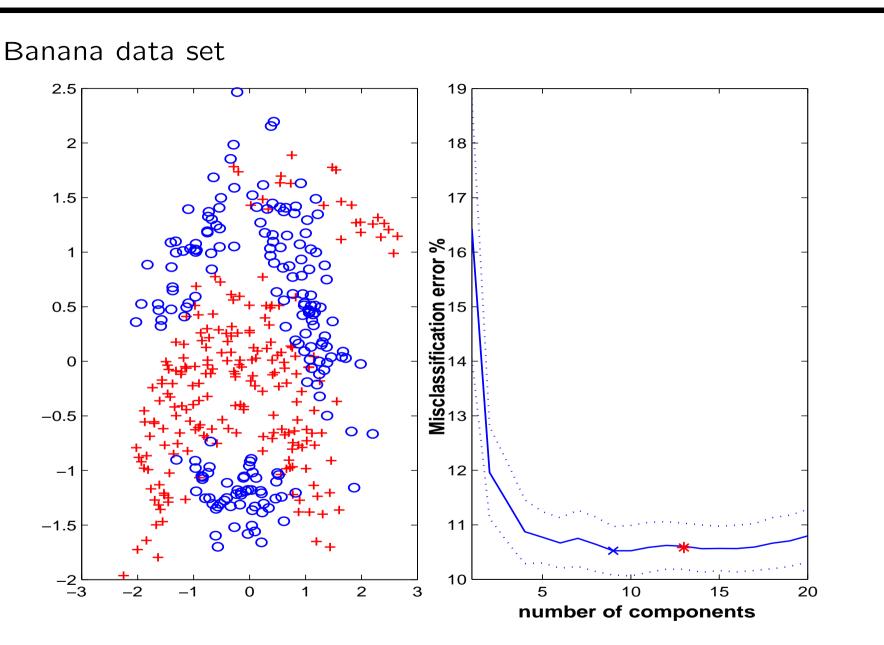


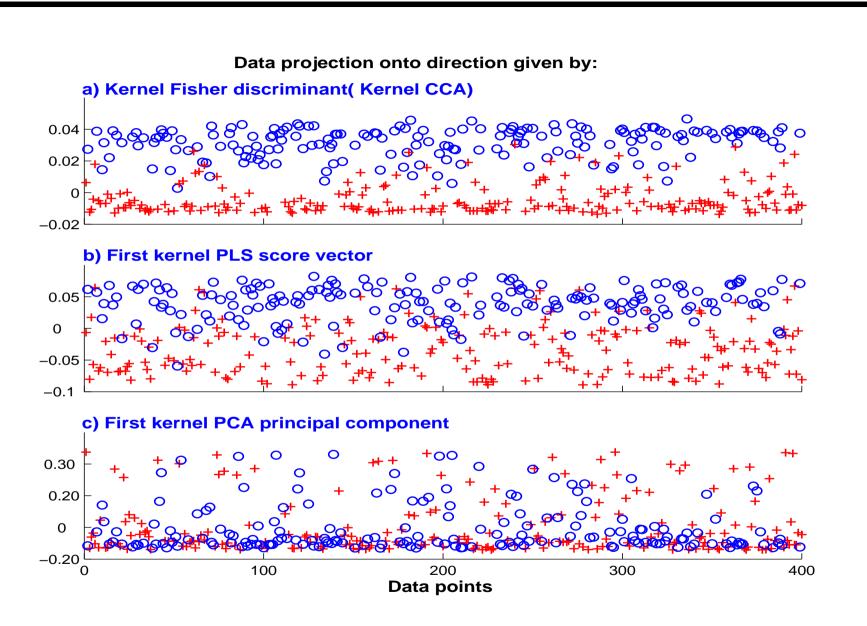
2. projection of test samples

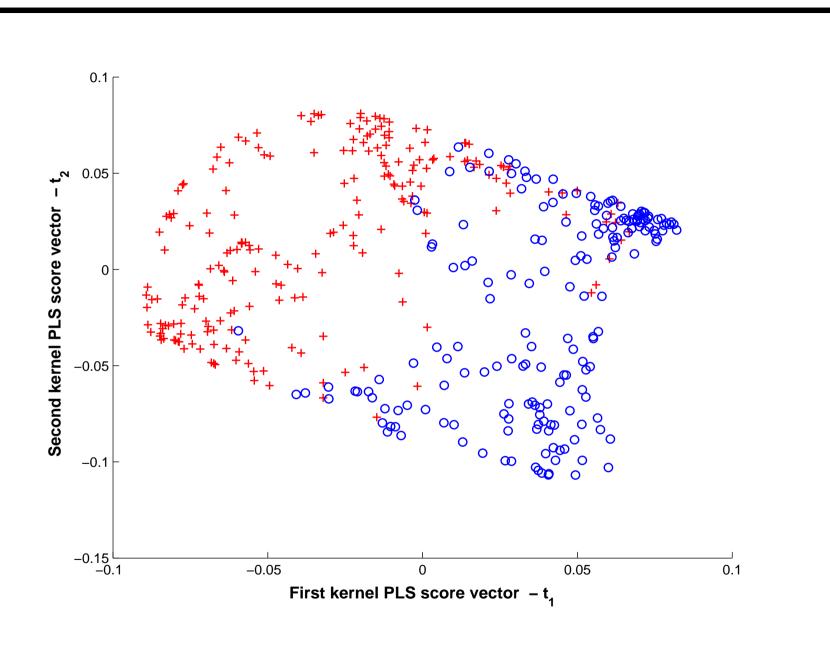
 $\mathbf{T}_t = \mathbf{K}_t \mathbf{U} (\mathbf{T}^T \mathbf{K} \mathbf{U})^{-1}$; (\mathbf{K}_t - test set Gram matrix)

Experiments - **Classification**

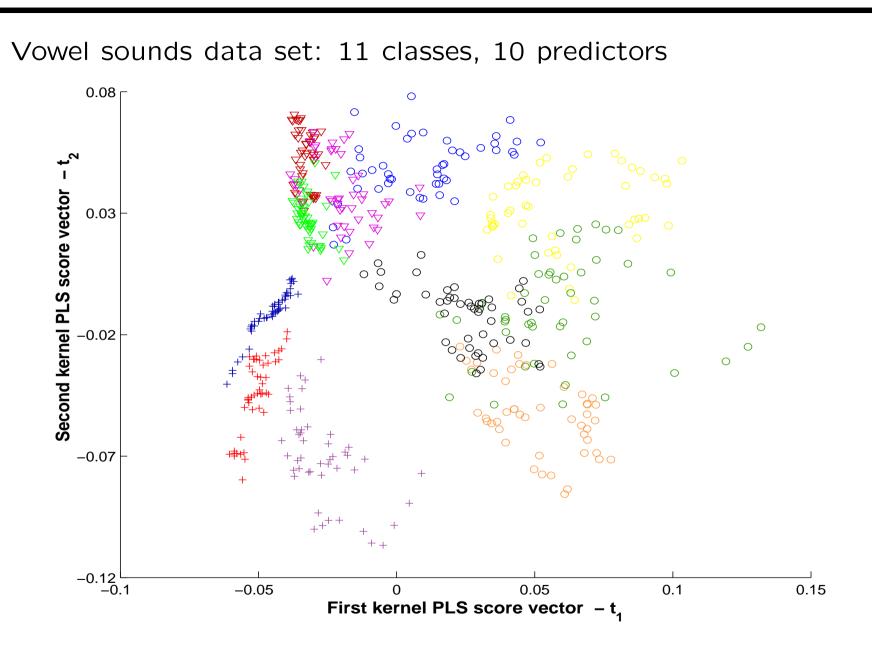
- 13 benchmark data sets of two-class classification problem http://www.first.gmd.de/~raetsch
- vowel sounds data set multi-class problem (11 classes)
- classification of finger movement periods from non-movement periods based on electroencephalograms (EEG)
- cognitive fatigue estimation

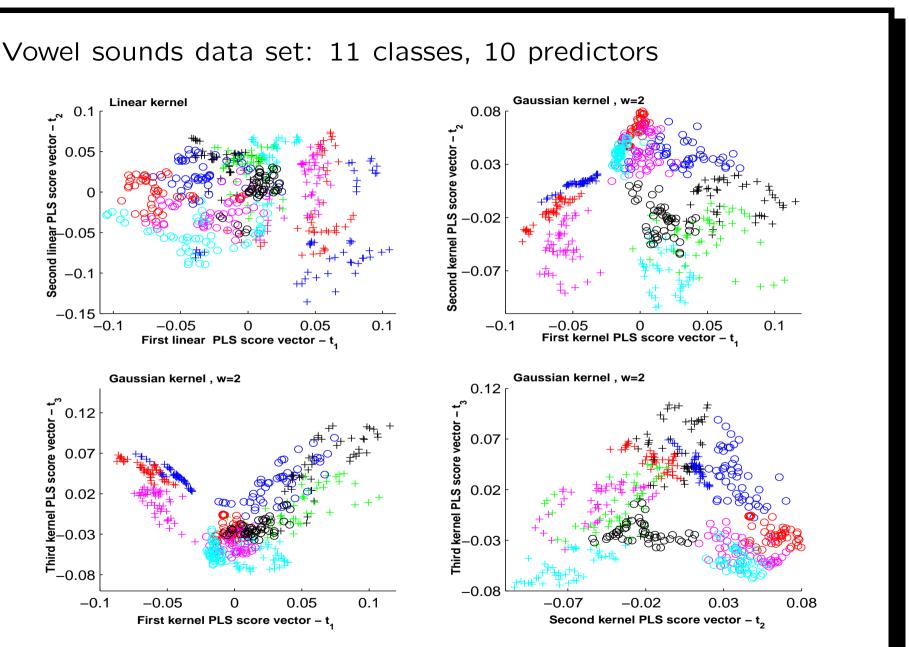






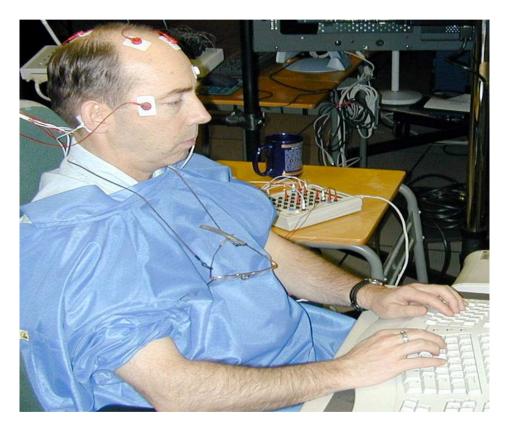
Data Set	KFD	C-SVC	KPLS-SVC
Banana	$10.8{\pm}0.5$	$11.5{\pm}0.5$	10.5±0.4
B.Cancer	25.8±4.6	26.0±4.7	25.1±4.5*
Diabetes	23.2±1.6	23.5±1.7	23.0±1.7
German	23.7±2.2	23.6±2.1	23.5±1.6
Heart	16.1±3.4	$\textbf{16.0}{\pm\textbf{3.3}}$	$16.5 {\pm} 3.6$
Image	4.76±0.58	$\textbf{2.96}{\pm 0.60}$	$3.03{\pm}0.61$
Ringnorm	$1.49{\pm}0.12$	$1.66{\pm}0.12$	$1.43{\pm}0.10$
F.Solar	33.2±1.7	32.4±1.8	32.4±1.8
Splice	$10.5{\pm}0.6$	$10.9{\pm}0.7$	$10.9{\pm}0.8$
Thyroid	4.20±2.07	4.80±2.19	4.39±2.10
Titanic	23.2±2.06	22.4±1.0	22.4±1.1*
Twonorm	$2.61{\pm}0.15$	2.96±0.23	$\textbf{2.34}{\pm}\textbf{0.11}$
Waveform	9.86±0.44	9.88±0.43	$9.58{\pm}0.36$



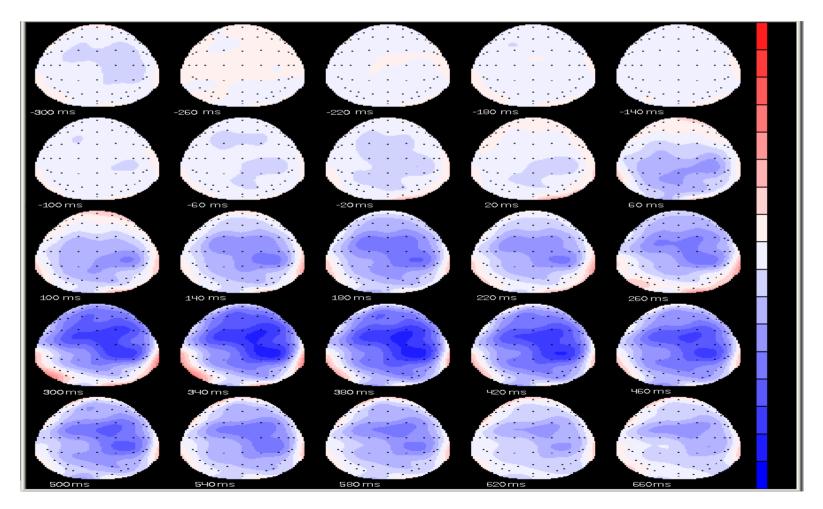


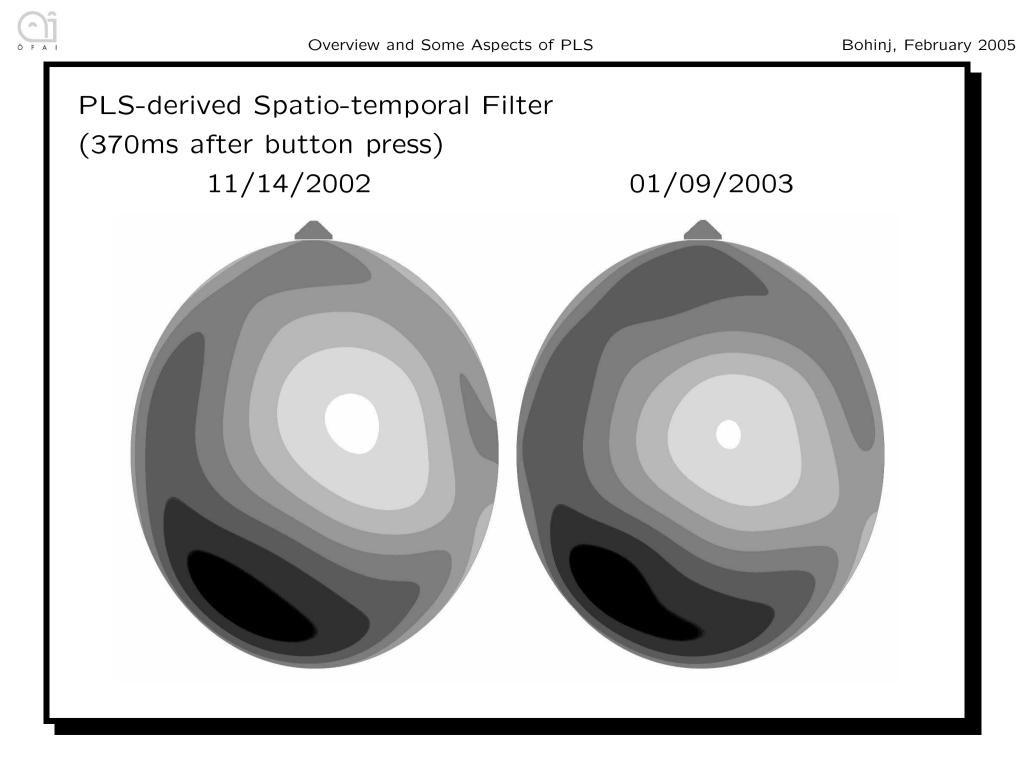
Method	Training Error	Testing Error
LDA	0.32	0.56
SVC (linear) - 1vs1	0.19	0.51
KPLS-SVC (linear) - 1vs1	0.16	0.47
FDA/MARS (df=2)	0.02	0.42
FDA/MARS (df=6,red. dim.)	0.13	0.39
SVC (gauss) - 1vs1	0.01	0.37
KPLS-SVC (gauss) - 1vs1	0.01	0.35
SVC (gauss, w \leq 5) - 1vs1	0.002	0.29
KPLS-SVC (gauss, w \leq 5) - 1vs1	0.002	0.33

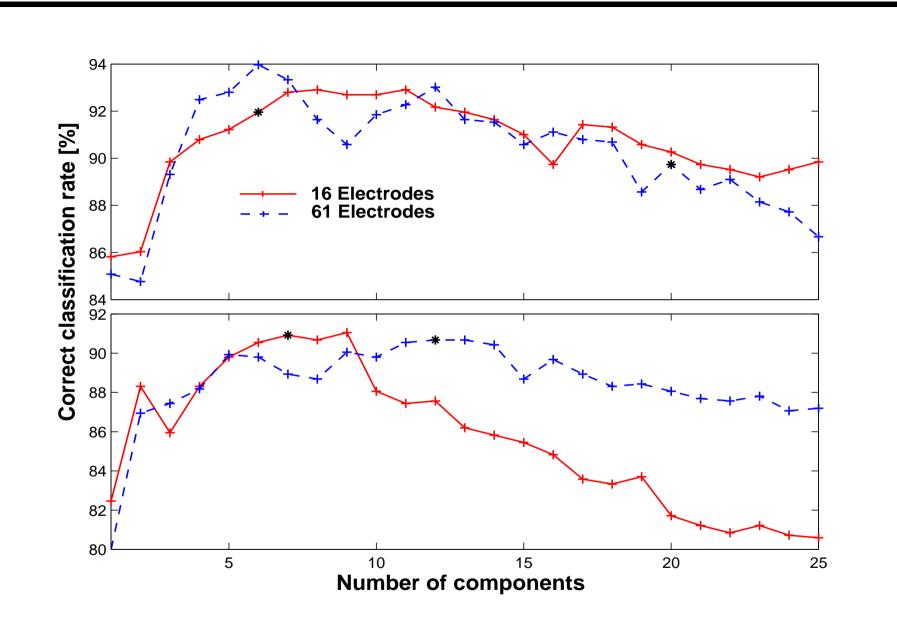
Finger movement periods vs. non-movement periods

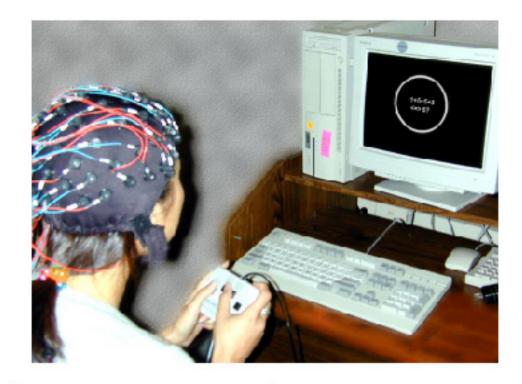


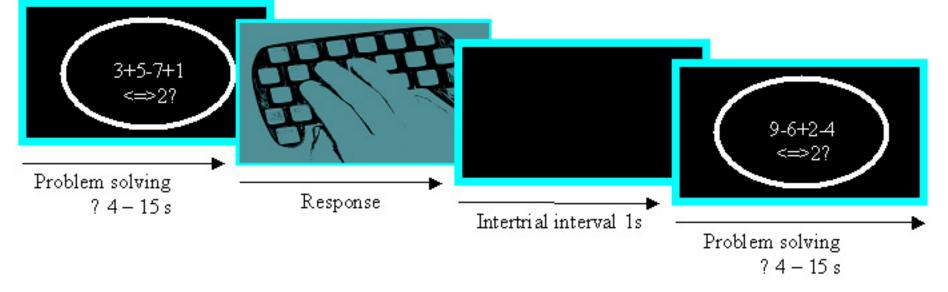
PLS-derived Spatio-temporal Filter - 01/09/2003



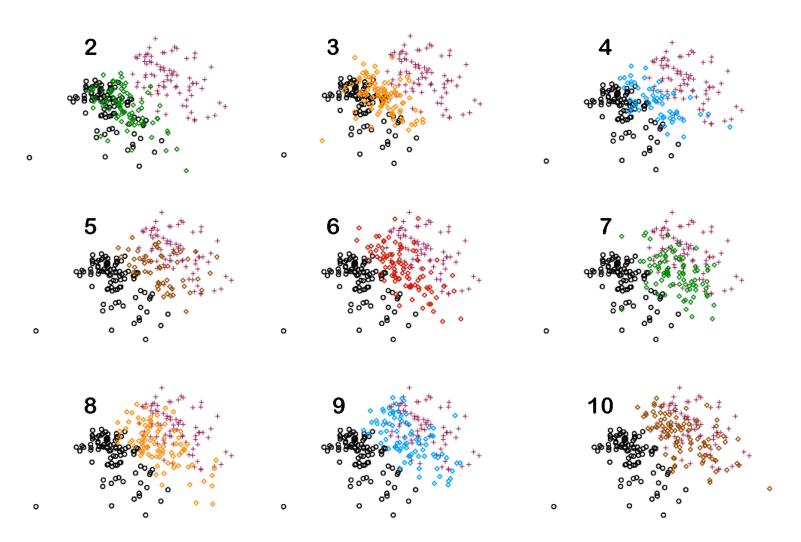








KPLS Scores (C1, C2) Predicted for EEG Epochs in the Intervening 15-minute Blocks



Kernel PLS Estimation of ERP - Regression

• Generated data:

Event-Related Potentials (N1,P2,N2,P3)

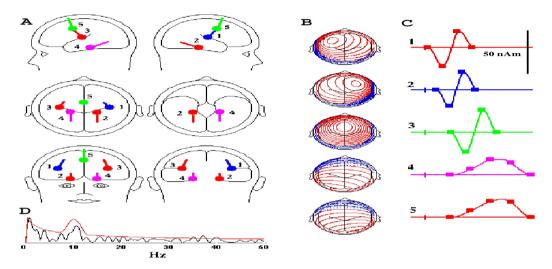
relax state spatially distributed EEG signal + white Gaussian noise

+

• Real ERP data:

ERPs recorded in an experiment of cognitive fatigue

Generation of ERPs using BESA software



 $E \qquad Fp1 \qquad Fp2 \qquad 5.0 \mu V$ $F7 \qquad F3 \qquad Fz \qquad F4 \qquad F4$ $- 41 \quad T7 \qquad C3 \qquad Cz \qquad C4 \qquad T8 \qquad A2$ $P7 \qquad P3 \qquad Pz \qquad P4 \qquad P8$ $O1 \qquad O2$

Smoothing Splines

•
$$\min_f(\frac{1}{n}\sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \int_a^b (f^{(2)}(x))^2 dx \quad \lambda > 0 \Rightarrow$$

natural cubic splines with knots at x_i ; i = 1, ..., n

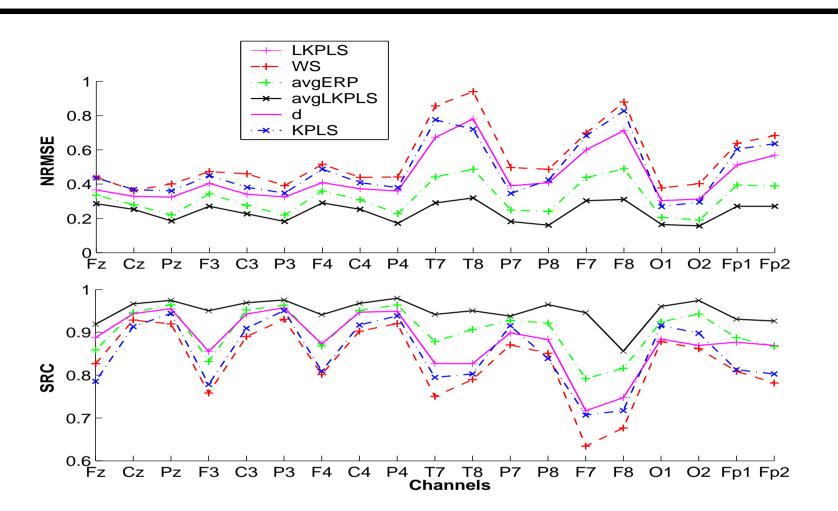
• Complete basis \rightarrow *shrink* the coefficients toward smoothing

Wavelet Smoothing

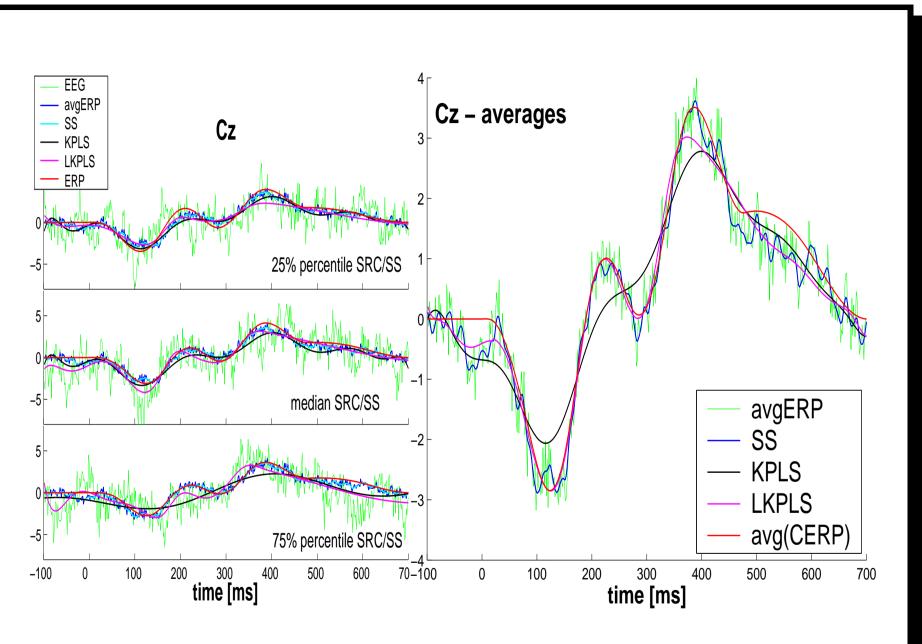
- Complete orthonormal basis → shrink and select the coefficients toward a sparse representation
- Wavelet basis is *localized in time and frequency*

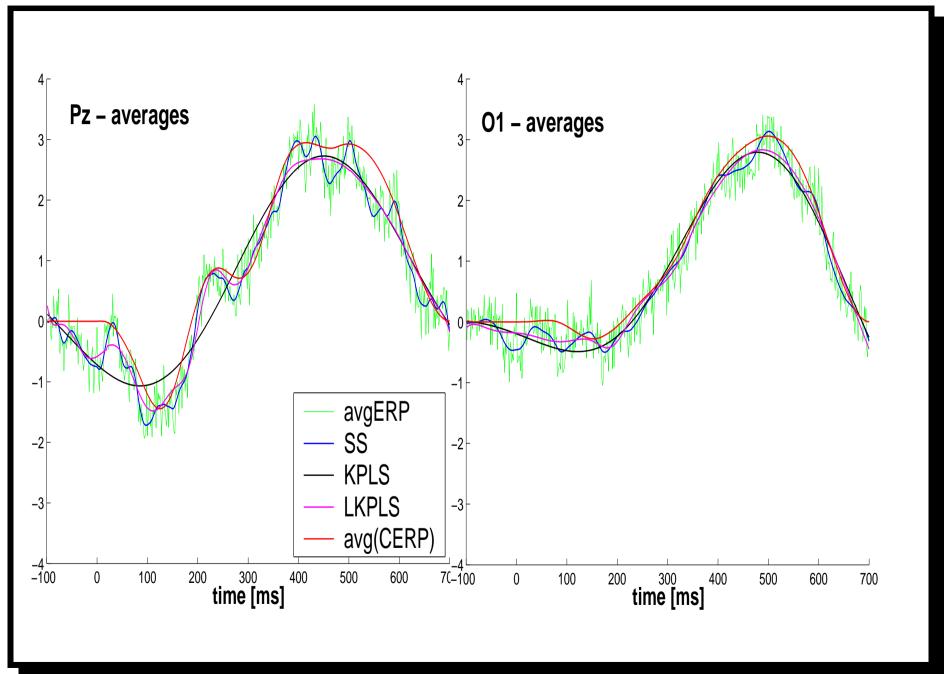
Correlated Noise Estimate

- measured signal_i = ERP_i + (on-going EEG + measur. noise)_i
- We compute cov(measured signal_i avg(measured signal))

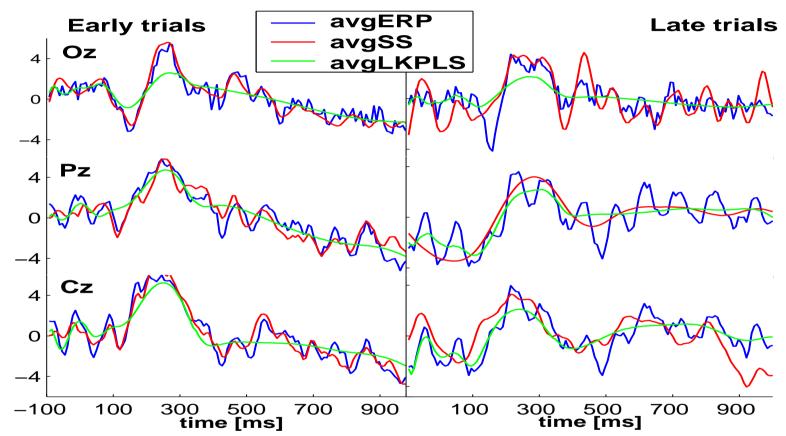


Results on noisy event related potentials (ERPs)–20 different trials were used. Averaged SNR over the trials and electrodes was equal to 1.3dB (min=-7.1dB, max=6.4dB) and 512 samples were used. NRMSE - normalized root mean squared error; SRC - Spearman's rank correlation coefficient.

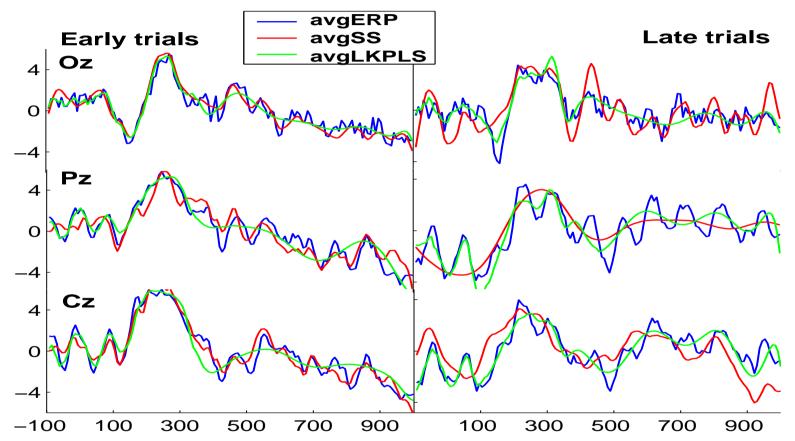




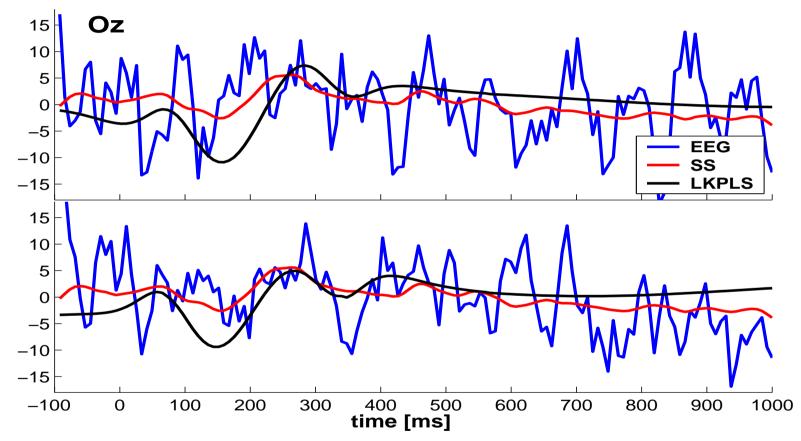
Results on ERPs recorded on a cognitive fatigue experiment



Results on ERPs recorded on a cognitive fatigue experiment



Sample of two ERPs trials recorded on a cognitive fatigue experiment



Ö F A I

Conclusions

- PLS Regression valuable method for data with strong latent structure
- PLS discrimination useful method for dimensionality reduction, visualization
- PLS code is simple do no forget to try it when you look at new data ;-)

- [1] M. Barker and W.S. Rayens. Partial least squares for discrimination. *Journal of Chemometrics*, 17:166–173, 2003.
- [2] T. De Bie, N. Cristianini, and R. Rosipal. *Handbook of Computational Geometry for Pattern Recognition, Computer Vision, Neurocomputing and Robotics*, chapter Eigenproblems in Pattern Recognition. Springer Verlag (in print), 2005.
- [3] L. Breiman and J. H. Friedman. Predicting Multivariate Responses in Multiple Regression. *Journal of the Royal Statistical Society: Series B*, 59(1):3–54, 1997.
- [4] N.A. Butler and M.C. Denham. The peculiar shrinkage properties of partial least squares regression. *Journal of the Royal Statistical Society: Series B*, 62:585–593, 2000.
- [5] S. de Jong. SIMPLS: an alternative approach to partial least squares regression. *Chemometrics and Intelligent Laboratory Systems*, 18:251–263, 1993.
- [6] S. de Jong, B.M. Wise, and N.L. Ricker. Canonical partial least squares and continuum power regression. *Journal of Chemometrics*, 15:85–100, 2001.
- [7] I.E. Frank and J.H. Friedman. A Statistical View of Some Chemometrics Regression Tools. *Technometrics*, 35(2):109–147, 1993.

- [8] P.H. Garthwaite. An Interpretation of Partial Least Squares. *Journal of the American Statistical Association*, 89(425):122–127, 1994.
- [9] I.S. Helland. On structure of partial least squares regression. *Communications in Statistics Elements of Simulation and Computation*, 17:581–607, 1988.
- [10] I.S. Helland. Some theoretical aspect of partial least squares regression. *Chemometrics and Intelligent Laboratory Systems*, 58:97–107, 2001.
- [11] A. Höskuldsson. PLS Regression Methods. Journal of Chemometrics, 2:211–228, 1988.
- [12] O.C. Lingjaerde and N. Christophersen. Shrinkage Structure of Partial Least Squares. *Scandinavian Journal of Statistics*, 27(3):459–473, 2000.
- [13] N.J. Lobaugh, R. West, and A.R. McIntosh. Spatiotemporal analysis of experimental differences in event-related potential data with partial least squares. *Psychophysiology*, 38:517–530, 2001.
- [14] R. Manne. Analysis of Two Partial-Least-Squares Algorithms for Multivariate Calibration. *Chemometrics and Intelligent Laboratory Systems*, 2:187–197, 1987.
- [15] A.R. McIntosh, F.L. Bookstein, J.V. Haxby, and C.L. Grady. Spatial pattern analysis of functional brain images using partial least squares. *NeuroImage*, 3:143–157, 1996.
- [16] N. Krämer. On the shrinkage behavior of Partial Least Squares Regression. Technical report, Technical University of Berlin, http://stat.cs.tu-berlin.de/ nkraemer, 2005.
- [17] F.A. Nielsen, L.K. Hansen, and S.C. Strother. Canonical Ridge Analysis with Ridge Parameter Optimization. *NeuroImage*, 7(4):S758, 1998.
- [18] S. Rännar, F. Lindgren, P. Geladi, and S. Wold. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm. *Chemometrics and Intelligent Laboratory Systems*, 8:111–125, 1994.
- [19] R. Rosipal and L.J. Trejo. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. *Journal of Machine Learning Research*, 2:97–123, 2001.

- [20] P.D. Sampson, A. P. Streissguth, H.M. Barr, and F.L. Bookstein. Neurobehavioral effects of prenatal alcohol: Part II. Partial Least Squares analysis. *Neurotoxicology and tetralogy*, 11(5):477–491, 1989.
- [21] M. Stone. Cross-validatory choice and assessment of statistical predictions (with discussion). *Journal* of the Royal Statistical Society, series B, 36:111–147, 1974.
- [22] M. Stone and R.J. Brooks. Continuum Regression: Cross-validated Sequentially Constructed Prediction Embracing Ordinary Least Squares, Partial Least Squares and Principal Components Regression. Journal of the Royal Statistical Society, series B, 52(2):237–269, 1990.
- [23] H. D. Vinod. Canonical ridge and econometrics of joint production. *Journal of Econometrics*, 4:147–166, 1976.
- [24] J.A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical report, Department of Statistics, University of Washington, Seattle, 2000.
- [25] H. Wold. Estimation of principal components and related models by iterative least squares. In P.R. Krishnaiah, editor, *Multivariate Analysis*, pages 391–420. Academic Press, New York, 1966.
- [26] H. Wold. Soft Modeling by Latent Variables: The Nonlinear Iterative Partial Least Squares (NIPALS) Approach. In J. Gani, editor, *Perspectives in Probability and Statistics, Papers in Honour of M.S. Bartlett on the occasion of his sixty-fifth birthday*, pages 117–142. Academic Press, London, 1975.
- [27] S. Wold, H. Ruhe, H. Wold, and W.J. Dunn III. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverse. *SIAM Journal of Scientific and Statistical Computations*, 5:735–743, 1984.
- [28] K.J. Worsley. An overview and some new developments in the statistical analysis of PET and fMRI data. *Human Brain Mapping*, 5(4):254–258, 1997.