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Abstract

Two different problems of reflecting brain functioning are addressed. This involves human
performance monitoring during the signal detection task and depth of anaesthesia monitor-
ing. The common aspect of both problems is to monitor brain activity through the electroen-
cephalogram recordings on the scalp. Although these two problems create only a fractional
part of the tasks associated with physiological data analysis the results and the methodology
proposed have wider applicability.

• A theoretical and practical investigation of the different forms of kernel-based non-
linear regression models and efficient kernel-based algorithms for appropriate features
extraction is undertaken. The main focus is on solving the problem of providing re-
duced variance estimates of the regression coefficients when a linear regression in some
kernel function defined feature space is assumed. To that end Kernel Principal Compo-
nent Regression and Kernel Partial Least Squares Regression techniques are proposed.
These kernel-based techniques were found to be very efficient when observed data are
mapped to a high dimensional feature space where usually algorithms as simple as their
linear counterparts in input space are used. The methods are used and compared with
existing kernel-based regression techniques in measuring the human signal detection
performance from the associated Event Related Potentials.

• The depth of anaesthesia (DOA) problem was addressed by assuming different com-
plexity measures. These measures were inspired by nonlinear dynamical systems and
information theories. Data from patients undergoing general anesthesia were used and
the results were compared with traditional spectral indices. The promising results of
this pilot study suggest the possibility to include these measures into the existing family
of DOA descriptors. This opens a new area of more detailed and extensive research
into this very important medical problem.
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diag(.) diagonal matrix
rank(.) rank of matrix
trace(.) trace of matrix
var(.) variance
cov(.) covariance
∈ symbol for “belongs to”
⊂ symbol for “subset of”
⊆ symbol for “subset of or equals to”
≡ symbol for “denote, define”



1. INTRODUCTION

The work which follows springs from two sources which may seem to be rather different,
however, under more detailed inspection we discover that the results of the individual parts
are contributory to each other. Two different problems of reflecting brain functioning are
attacked. These are human performance monitoring during the signal detection task and
depth of anaesthesia monitoring. The common aspect of both problems is to monitor brain
activity through the electroencephalogram (EEG) recordings on the scalp. However, the
major difference between both problems is how these recordings are related to the behavior
of the humans under investigation. While in the case of human performance monitoring we
may objectively evaluate the ability of individual subjects to detect a desired signal occurring
on the monitor by observing the correctness and reaction time of subjects, in the case of
depth of anaesthesia monitoring we need to focus on the possible extraction of such features
(descriptors) which may help us to make a decision about the anaesthetic level of patients
during the surgery.

We provide a more detailed introduction to the investigated problems in the individual
parts of this thesis, however, for the moment we would like to briefly discuss general aspects of
the use of EEG in clinical or experimental practice and provide several different examples and
experiments of brain function monitoring which are related to our problems. The EEG was
first described in 1875 by Richard Caton, a physician in Liverpool, who made experiments
on exposed cortical surface of animals where he observed electrical oscillations. However,
it was Hans Berger, a psychiatrist in Jena, who first reported more systematic descriptions
of human EEG. From that time there began a large interest in the medical community to
use EEG in clinical practice. Complicated, and on first inspection irregular and random
behavior of EEG traces gave rise to the necessity to involve a more rigorous approach to
EEG than simple visual inspection of EEG recordings. A well established methodology to
investigate the changes in EEG recordings is based on transformation of the signal into the
frequency domain where inspection of the waveforms belonging to different frequency bands
is usually conducted. The former observations of EEG recordings of a wide range of different
humans of varying age, physique, psychological, healthy or unhealthy conditions provides a
reference for the detection of possible anomalies in investigated patients. Spikes, short term
lower amplitude oscillations or other features occurring in EEG traces may further serve for
better detection of brain activity changes. Another, recently applied promising methodology
of EEG signals processing is based on theory of nonlinear dynamical systems, chaos theory
and theory of stochastic processes.

Another domain of brain functioning monitoring is the recording of brain event related po-
tentials (ERP), that is electroencephalographic recordings time-locked to a specific stimulus
or cognitive activity. ERP reflect mental processes and are known to be related to human per-
formance, including signal detection, target identification and recognition, memory, tracking
and mental computation.

We already sketched at the beginning of this chapter that we may generally consider two
different tasks of brain function monitoring. The first category is given by problems where the
objective measurement of human behavior may be observed. Simple eyes opening and closing
during the EEG recording will create two categories and the classification task to recognize
these events from EEG traces is well defined in the way that we may construct a good classifier
by observing this objective information. Examples of these tasks are found in the domain of
neurocontrol techniques using the detection of stimuli or cognitive activities determined EEG
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signals (e.g. ERP) as an indicator of human intentions. This provides another channel of
possible interactions between human and machines (brain computer interface, robotic control)
or opens new possibilities of communication between humans (rehabilitative medicine). By
giving a human a mental task (e.g. counting) for the case when the letter of interest is shortly
flashed on the monitor we may observe a significant ERP component occurring approximately
300ms after the stimulus (P300 component). This allows us to discriminate between the
letter of interest and remaining letters of an alphabet also randomly flashed on the screen.
This may produce a new tool for communication between paralyzed, motor limited patients
and physicians. The problem of human performance monitoring during the signal detection
task investigated in this thesis belongs to this category. The regression model reflecting
the dependence between measured ERP and performance measure consisting of correctness,
reaction time and confidence as provided by investigated subject is constructed.

However, in many clinical practice problems we usually do not have this reliable, objective
information we want to reference to the measured EEG signals. An example of this may be
the automatic detection of different stages of sleep. There exist generally five different stages
of sleep and one standard criterion of their classification is defined by the Rechtschaffen and
Kales scoring system. However, the actual classification by visual inspection of the EEG
traces depends on experience and up to some level on subjective decision of the electroen-
cephalographer. Although this subjective decision may by partially removed by appropriate
processing of the raw EEG data with the aim to more reliably detect individual features
included in the general scoring systems, we cannot assess a fully objective decision as this de-
pends on electroencephalographer or laboratory conditions. Thus the construction of a fully
automatic classifier will depend on the scoring provided and in reverse the spurious results
of the system have to be consulted with an electroencephalographer. Even more complicated
may be the problem of the depth of anaesthesia monitoring investigated in the second part of
this thesis. In this case there does not exist a generally acceptable standard scoring system
and the decision of how deeply the patients are anaesthetized during the surgery depends
on an anaesthesiologist who needs to combine a wide range of clinical aspects and different
auxiliary measures. Finding a reliable, objective measure derived from EEG recordings at-
tracted the attention of the research community over the past few decades and this thesis
also contributes to this area.

1.1 Contribution of the thesis

In this subsection we briefly summarize the novelty of the study to make the later presentation
clearer and the contribution of the thesis more evident. All contributions to the field are
summarized in refereed journal papers and conference publications as well as in technical
reports which reflect both the theoretical and experimental results of the author.

The two problems described in the previous section and addressed in this thesis will be
studied in parallel.

• In the case of human performance monitoring during the signal detection task the new
kernel based regression techniques were studied. The introductory study of the support
vector regression (SVR) technique resulted in a conference publication [106], where a
new method of on-line prediction of the chaotic Mackey-Glass time series was proposed.
Although this part of the study is not directly connected to the work presented in the
thesis, the superior performance of SVR in comparison to a Resource Allocating Ra-
dial Basis Function network provides an indication of the potential applicability of the
methodology of constructing a linear regression model in a feature space where the
original data are nonlinearly mapped. In the next step Kernel Principal Component
Analysis (PCA) will be studied as a potential tool for nonlinear features extraction.
This study also motivates our investigation into Kernel Principal Component Regres-
sion models, including an extensive comparison of the existing Kernel Ridge Regression,
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SVR and Multi-layer SVR techniques. Nonlinear, kernel-based regression models using
features extracted by the linear PCA and Kernel PCA were compared in the conference
publication [108] and journal paper [110]. Statistically significant improvement using
Kernel PCA in comparison to linear PCA preprocessing indicate the usefulness of the
approach. The computational and memory allocation constraints when Kernel PCA is
applied to large data sets motivated our derivation of the Expectation Maximization
approach to Kernel PCA published in [107]. In the thesis we will discuss other the-
oretical aspects of the algorithm. In [111] we have experimentally demonstrated the
ability of the algorithm to extract principal components which lead to the Kernel PCR
models with the same accuracy when the Kernel PCA algorithm is used. However, we
demonstrated that in the case when a subset of main principal components is required
the algorithm is more efficient. Moreover, lower memory requirements of the algorithm
allows its use also in the situation of large data sets. Finally, the family of regularized
least squares models in a feature space will be extended by Kernel Partial Least Squares
(PLS) regression. We will demonstrate that exploiting existing correlations between re-
gressors and response variables Kernel PLS provides models with significantly lower,
qualitatively different components in comparison to Kernel PCR, while the prediction
accuracy remains the same or is superior. This work was published in [112] and was
accepted to a journal. Finally, the performance of all kernel based regression models
will be compared on the problem of human performance monitoring during the signal
detection task.

• In the second part of the thesis the usefulness of entropy rates and other complexity
measures for the purpose of extracting depth of anaesthesia information from the EEG
is explored. These measures will be applied to EEG data from patients undergoing
general anaesthesia and will be compared with traditional spectral indices. Eight EEG
series will be investigated. Two representative parts of these EEG series will be used
to quantify the discriminative power of each method: a series containing moderate and
light anaesthesia; and one containing the patient’s emergence from anaesthesia. We will
show that the complexity measures (some of them for the first time applied to EEG
data measured under anaesthesia) are as good as, or better than the spectral meth-
ods at distinguishing light from moderate anaesthetic depth. Different theoretical and
practical aspects of individual measures will be discussed. Part of the presented work is
under review for publication in a journal. Finally, a large amount of experimental work
associated with the measurement and preprocessing of EEG data measured under real
surgical conditions is implicitly hidden behind the published results, however, this part
of work and obtained data sets are highly contributory to the further investigations
which will be undertaken in the domain.



PART A

In this part of the thesis we start with the formulation of the nonlinear regression problem
and will provide several examples of nonparametric regression models. Then we focus our
attention on regression methods constructed using the theoretical results of a new learning
paradigm – Structural Risk Minimization (SRM) Inductive Principle – developed over the
last few decades. We provide a description of the SRM Inductive Principle in sufficient
detail to understand how the principle motivates the practical development of new learning
algorithms. We also highlight the close connection of the SRM principle to regularization
theory when the construction of regression models is considered. Finally, the first chapter
of part A is concluded by providing basic definitions of a Reproducing Kernel Hilbert Space
(RKHS) and by a description of the Representer Theorem which is one of the main results
in the theory of learning in a RKHS. The introductory part is mainly motivated by the work
published in [153, 23, 35, 156].

In the second chapter we discuss the nonlinear, kernel-based Principal Component Anal-
ysis (PCA) method. Motivated by the probabilistic linear PCA model we provide the Ex-
pectation Maximization (EM) approach to Kernel PCA and then we discuss several aspects
and properties of the approach. Both standard Kernel PCA and the EM approach to Kernel
PCA have been further used for the extraction of principal components employed in regression
tasks.

The next chapter summarizes several nonlinear, kernel-based regression models considered
in a RKHS. First, the regularized least-squares models – Kernel Partial Least Squares, Kernel
Principal Component Regression and Kernel Ridge Regression – are described. The short
description of Support Vector Regression (SVR) and Multi-Layer SVR is also provided. The
problem of multicollinearity and its influence on the variance of the estimate of regression
coefficients in the case of least-squares regression models is addressed. The connections among
the individual regression models are provided and some of their properties are discussed.
Finally, the model selection approaches as used in the experiments conducted are described.

In the next, experimental part, the construction and experimental settings for acquisi-
tion of the data sets employed is provided. The numerical results achieved with individual
regression techniques are described and compared.

The main results and observations are summarized in the last chapter.



2. INTRODUCTION TO KERNEL LEARNING

2.1 Nonlinear Regression

One of the important tasks in mathematical statistics is to find the relationships between a set
of independent variables, usually called predictor variables (inputs), and the set of dependent
variables called responses (outputs). If at least one of the sets of variables is being subject to
random fluctuations, possible measurement noise or other forms of randomness the problem is
known as regression. While linear regression considers only linear relations between predictors
and response variables, in nonlinear regression more general forms of dependencies may be
assumed. Although the traditional linear regression models are attractively simple, many
real life problems have a nonlinear character.

In the nonlinear regression formulation the goal is to estimate an unknown (desired)
continuous and real valued function g assuming the model

y = g(x) + η, (2.1)

where η represents a random part (noise) of the observed output values y ∈ Y ⊆ R and
x ∈ X ⊆ RN is an N -dimensional vector of input variables. We assume that the random noise
η is zero mean and distributed according to the unknown probability distribution function
P (η). Based on a set of the observed input-output pairs {(xi, yi)ni=1 ∈ X ×Y} the estimate of
g(x) is constructed. We will consider this estimate to be a linear combination of the functions
{Ψi(.)}pi=1, p ∈ N , weighted through the coefficients {wi}pi=1 and denote it

f(x) ≡ f(x, θ) =
p
∑

i=1

wiΨi(B
Tx) + b. (2.2)

We assume that θ ∈ Θ, where Θ represents a set of unknown parameters w = (w1, . . . , wp)
T ,

b,B, p and parameters characterizing the functions {Ψi}pi=1. The coefficient b is usually
called the bias and it makes the model (2.2) translation invariant. The matrix B extends the
model by assuming different linear transformations or weighting of the original predictors1.
Generally, the construction of the estimate f(x) consists of two different tasks:

a) the selection of the number p and appropriate forms of the basis functions {Ψi}pi=1
b) the estimation of the parameters B,w and b.

In the next two subsections we describe and provide several examples of two main statis-
tical approaches considered in nonlinear regression.

2.1.1 Parametric vs. Nonparametric Regression

The classical statistical learning paradigm was introduced in the 1920-1930s by Fisher [24].
The paradigm is based on the estimation of an unknown, desired functional dependency

1 In many linear or nonlinear regression models the matrix B is taken to be the (N ×N) identity matrix;
i.e. the original input representation is used. However, in some applications it may be profitable to assume the
reduction of a possibly high-dimensional input space N to more compact K < N representation. Examples of
this can be the transformation of x given by the (N ×K) matrix B consisting of the K eigenvectors found by
Principal Component Analysis. Assuming B to be the (N ×N) diagonal with different values on the diagonal
leads to a weighting of the original predictors.
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g using a priori knowledge about the dependency up to the values of a finite number of
parameters. Therefore estimation of the parameters represents the problem of dependency
estimation. An example may be the estimator with the polynomial basis functions up to the
order p; i.e.

f(x) =
p
∑

i=1

wix
i + b.

Based on the data provided we only need to estimate the unknown coefficients {wi}pi=1 and
b whilst the maximum order p and thus the form of nonlinearity is given a priori.

In the last 20-30 years a new statistical learning theory has been investigated which over-
comes some of the deficiencies of Fisher’s paradigm. The new paradigm is based on the
assumption that in order to estimate dependency from the data, it is sufficient to know some
general properties of the set of functions to which the unknown dependency belongs [153].
In our context this paradigm represents the nonparametric approach to the regression. An
example of nonparametric regression, which makes minimal assumptions about the depen-
dency of the outputs on the input variables, is the spline smoothing method [64, 156]. In this
case we are giving no explicit parameterization to (2.2) and assume that the estimate lives
in the infinite dimensional space of all continuous functions of x. The final model which will
take the form (2.2) is then given by the learning process itself. In [153], Vapnik describes the
basic principles of the new theory and explains the core of the new approach – the Structural
Risk Minimization (SRM) inductive principle through which a learning process is defined.
Before we give a more detailed description of this paradigm in section 2.2, we briefly review
several nonparametric regression approaches to the construction of the estimate (2.2).

2.1.2 Nonparametric Regression Models

Additive Models (AM)
AM were proposed in [12]. The simplest AM have the form

f(x) =
N
∑

j=1

fj(xj) + b,

where xj is the jth predictor in the observation x and b is a bias term. The functions fj
are a priori unknown and are estimated from the data. AM assume that the predictors
have an additive effect. Thus, the response variable is modeled as the sum of arbitrary
smooth univariate functions of the predictors. The backfitting algorithm described in
[43] is used to find the best AM model based on the data provided.

Projection Pursuit Regression (PPR)
PPR was designed to handle cases when the underlying function is additive with respect
to linearly transformed predictors rather than the original predictor variables [28]. PPR
has a form similar to AM

f(x) =
p
∑

j=1

fj(w
T
j x) + b,

where the vectors w1, . . . ,wp determine a set of p linear combinations of the predictors.
These vectors may be found through the cross-validation technique and are not neces-
sarily orthogonal. The second step then consists of selecting the appropriate functions
fj and the same approaches as used in AM may be used here.

Spline Models
Consider the interval [a, b] and k knots {ti}ki=1 splitting the interval in the following way
−∞ ≤ a < t1 < t2 < . . . < tk < b ≤ ∞. The (univariate, natural) polynomial spline is
a real valued function s(x) having the following properties:
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1. s(x) ∈ pm−1 for x ∈ [a, t1], x ∈ [tk, b]

2. s(x) ∈ p2m−1 for x ∈ [ti, ti+1], i = 1, . . . , k − 1

3. s(x) ∈ C2m−2 for x ∈ (−∞,∞)

where pr is the set of polynomials of degree r or less and Cr is a set of functions with
r continuous derivatives.

Spline models are based on the assumption that in regression we prefer smooth regres-
sion estimates rather than interpolation of the observed data. Then, for ξ > 0 we look
for the estimate f ξ(x) given by minimizing

1

n

n
∑

i=1

(yi − f(ti))2 + ξ

∫ b

a
(fm(x))2dx,

where f belongs to a Hilbert space of functions with m− 1 continuous derivatives and
the mth derivative square integrable. It was shown by Schoenberg [118, 117], that
the minimizer is a natural polynomial spline. The parameter ξ controls the trade off
between fit to the data and the smoothness given by the squared integral of the mth
derivative of the solution. For further details on spline models and extension to additive
spline models in the case of multivariable inputs see [156].

Kernel Regression (KR)
KR or the Nadaraya-Watson estimator is based on the estimation of the joint probability
distribution P (x, y) of predictor and response variables from the final number n of
observed samples zi = (xi, yi) using the Parzen window estimator

P (z) =
1

nh

n
∑

i=1

u

(

z− zi
h

)

,

where u(.) is an appropriate kernel and h is a positive parameter. Choosing u(.) to be
of the form

u(z) = K(‖x‖)K(y),

where K is a one-dimensional, symmetric kernel, leads to the Nadaraya-Watson esti-
mator [83, 159]

f(x) =

∑n
i=1 yiK(‖x− xi‖)
∑n

i=1K(‖x− xi‖)
.

There is a wide literature published on this type of regression and the appropriate forms
of the kernel K and its parameters are discussed there (see e.g. [32, 125, 42] and ref.
therein).

Regularization Networks (RN)
RN [35] represent a larger family of models minimizing the functional

H[f ] =
1

n

n
∑

i=1

(yi − f(xi))2 + ξΩ(f),

where f belongs to some space of real-valued functions, ξ is a positive constant (reg-
ularization term) and Ω(f) is a smoothness functional defining properties of the final
estimate f(x). We provide more detailed description of RN later, however, for the
moment we note that AM, PPR, splines models and KR approaches may be straight-
forwardly extended also into the context of RN [35]. One of the most well-known
examples of RN are radial-basis function networks [45, 35].
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Fig. 2.1: Block diagram of general learning process from examples. During the learning process the
learning machine receives the pairs of samples (x, y) from the generator of inputs and the
system, respectively. The goal of learning is to approximate the behavior of the system;
i.e. for any given input x return a value y0 close to the system response y.

Artificial Neural Networks (ANN)
A typical representative of an ANN is a feed-forward network of the form

f(x) = w0 +
p
∑

i=1

wiu(a
T
i x+ ai0),

where u(.) is an activation function (usually logistic or hyperbolic tangent function )
[45]. The back-propagation algorithm is used to estimate unknown parameters {wi,
ai, ai0}pi=1. The parameter p represents the number of hidden nodes (neurons) and is
usually tuned during the learning process. As ANN are not our main interest in this
thesis we refer the reader to [45] describing the model and learning strategies in more
detail.

2.2 Structural Risk Minimization Inductive Principle

Consider the general process of learning from examples as it is shown in Figure 2.1 and
described in [153]. The first block represents a generator of random input vectors x ∈ X ,
drawn independently from a fixed but unknown probability distribution P (x). The system
(supervisor) represents a functional block which for every input x returns an output value y
according to a fixed, unknown conditional distribution function P (y|x). Learning machines
represent a set of approximation functions A.2 The problem of learning is to find the function
f ∈ A which best approximates the system’s response. This selection is based on the observed
independent identically distributed (iid) data pairs (xi, yi)

n
i=1 drawn according to the joint

probability distribution function P (x, y) = P (x)P (y|x).
Now, consider the problem of regression estimation. We assume that the system output

y is real valued and that the set A is now a set of real functions f(x). The unknown function
g(x) from (2.1) is the mean of the output conditional probability; i.e. the regression function

g(x) =

∫

ydP (y|x). (2.3)

The goal of regression estimation is to find a function f0(x) from A which provides the
best approximation to the regression function. Although, later we will consider that this

2 SRM principle is a general learning theory and does not restrict the set of admissible functions to a specific
form. In fact, we may consider any set of functions.
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approximation function f0(x) will have the form (2.2), for the current theoretical description
of the SRM inductive principle we assume a rather general form for functions belonging to
the set A.

To find the function f0(x) the following risk functional

R[f ] =

∫

V (y, f(x))dP (x, y) (2.4)

is minimized over the class of functions A. V (y, f(x)) is an appropriately chosen cost-function
to measure the difference between the system’s response y and the response of the learning
machine f(x) to a given input x. In the case that V is of the form (y − f(x))2 the ideal
estimator f0(x) is the regression function (2.3). This simply means that we may obtain the
desired regression function g(x) only if it is contained in A otherwise the estimate f0(x) is
the closest to the regression function in the metric L2(X ) :

d(g(x), f0(x)) =

√

∫

(g(x)− f0(x))2dP (x).

Whereas in practice we usually do not know the probability distribution function P (x, y),
the following inductive principle consists of replacing risk functional (2.4) by the so-called
empirical risk functional [153]

Remp[f, n] =
1

n

n
∑

i=1

V (yi, f(xi)). (2.5)

Thus, using a limited set of observations (xi, yi)
n
i=1 ∈ X × Y we approximate the function

f0(x) which minimizes risk (2.4) by the function fn
0 (x) minimizing the empirical risk (2.5).

This principle of replacing the risk functional (2.4) by (2.5) is called the Empirical Risk
Minimization inductive principle (ERM principle) [153]. The ERM principle is quite a general
concept and is also included in the classical solution to the problem of regression estimation.
This will be discussed in the next subsection.

The obvious question when the ERM principle is used is how close the estimate fn
0 (x) will

be to the ideal estimate f0(x) given by the minimization of (2.4). Consider the case where the
set A is too complex; i.e. it contains functions which can almost perfectly fit the outputs y of
the system, and that we have only a restricted, relatively small number of observed examples.
It is possible that we may attain a zero value of (2.5) for some fn

0 (x), however this will not
guarantee that this estimate will be close to the f0(x). This intuitive result is given by the
fact that fn

0 (x) will also perfectly ‘copy’ the noise component of the observed outputs. In
addition, minimization of (2.5) is usually badly determined in the sense that several different
solutions may exist [142].

The problem of the convergence of fn
0 (x) to the ideal estimate f0(x) was intensively

studied by Vapnik and resulted in the method of Structural Risk Minimization (SRM) [152,
153]. The SRM principle is based on the idea of the restriction of the complexity of the
space A by reducing a set of all assumed approximation functions. This will guarantee the
avoidance of too ‘tight’ a fit of the observed noisy outputs; i.e. the problem of overfitting
or bad generalization properties of the final model fn

0 (x). The basic principle of SRM is
to construct a nested sequence of the smaller function spaces A1 ⊂ A2 ⊂ . . . ⊂ AP . The
ordering of the Ai’s is given by the order c1 ≤ c2 ≤ . . . ≤ cP , where ci is the finite quantity
measuring the capacity (complexity) of the function space Ai. The Vapnik-Chervonenkis
(VC) dimension, introduced by Vapnik and Chervonenkis [154], became one the most popular
measures to quantify the capacity of a set of functions. The SRM then combines the quality
of the approximation given by the minimization of the empirical risk functional (2.5) as well
as controlling the complexity of the approximating function. Mathematically this allows us
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Complexity of the function class 

Bound on the risk  

Empirical Risk Confidence interval  

large  small

Fig. 2.2: Schematic illustration of bound on the risk as a summation of the empirical risk and of the
confidence interval. Increasing the complexity of the function class decreases the empirical
risk but upper bound of the risk is increased due to the increase of confidence interval.
The smallest bound of the risk is a trade off between the empirical risk and complexity
(confidence).

to define general forms for probabilistic bounds on the distance between the risk functional
(2.4) and the empirical risk functional (2.5); i.e. with probability at least κ

R[f ] ≤ Remp[f, n] + β(

√

c

n
, κ), (2.6)

where c is the capacity, n the number of samples and β is an increasing function of c
n and κ.

Following [153] (page 92) this can be graphically illustrated as in Figure 2.2.
Although, the SRM principle provides a theoretical framework for the most accurate

estimate of f0(x), the practical implementation of SRM with the VC dimension or more
appropriate Vγ dimension (or closely related fat-shattering dimension) [62, 1, 5, 22] in the
case of real valued functions is a very difficult problem (see e.g. [23]). In spite of this fact, the
SRM principle together with the existing regularization theory motivated the construction of
new types of learning machines – Support Vector Machines (SVM). This connection between
SRM principle and regularization theory will be discussed in section 2.3. However, before
doing this, we will examine regression estimation in the classical paradigm.

2.2.1 Classical Paradigm of Regression Estimation

The classical paradigm for regression estimation is usually based on an a priori given para-
metric form of an unknown functional dependency. The maximum likelihood (ML) method
is then used as the basic inductive tool for the estimation of unknown parameters based on
the data provided.

Consider an unknown function g(x) from (2.1) which has the parametric form f(x, θ0), θ0 ∈
Θ. Further assume that the additive noise component η is distributed according to a known
probability density function p(η). Given the observed data pairs (xi, yi)

n
i=1 the ML principle

can be used to estimate an unknown vector of parameters θ0. This estimate is given by
maximizing of the functional

L(θ) =
n
∑

i=1

ln p(yi − f(xi, θ)), θ ∈ Θ.

It is well known that in the case that the noise is normally distributed with zero mean
and some fixed covariance matrix the ML estimate coincides with the minimization of the
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functional [52]

L∗(θ) =
n
∑

i=1

(yi − f(xi, θ))2, θ ∈ Θ.

Effectively it means we are minimizing the empirical risk functional (2.5) using the quadratic
loss function V . This will provide the function which gives the best least squares approxi-
mation to the data. However, when the noise is distributed according to a different law the
choice of a different cost function may be profitable. This issue is discussed in the following
subsection.

2.2.2 Cost Functions

In the case of the considered regression models (2.2) (i.e. regression models linear in regression
coefficients {wi}pi=1) the Gauss-Markov theorem states that the least squares estimate of
the vector of unknown coefficients w is the linear unbiased estimate with the minimum
variance among all the other linear unbiased estimates (see e.g. [93]). Thus, in the case
that the additive noise η is normally distributed it also provides the best approximation
to the regression function. This is not true if the additive noise is distributed according
to a different unknown distribution and the optimal ERM principle approximation to the
regression function leads to loss-function associated with this distribution. The choice of
different cost functions in dependence on a considered noise distribution was intensively
studied by Huber and gave rise to the so-called robust regression [52]. Motivated by this
result, for the class of densities ‘close’ to the uniform distribution, Vapnik [151] introduced a
ε-insensitive cost function of the form

V (y, f(x)) = |f(x)− y|ε =
{

0 : |f(x)− y| ≤ ε
|f(x)− y| − ε : otherwise

(2.7)

Other types of noise distributions and the corresponding cost functions generally used in the
context of studied kernel-based learning were discussed in detail in [128, 127].

2.3 Regularization Theory

In the previous section we pointed out that the direct minimization of the functional (2.5)
may lead to the problem of overfitting, i.e. the problem of bad generalization. It can happen
when the capacity of the set of functions A is very high and we are dealing with a data
set which is too small or contains only a limited amount of information about the desired
dependency. We have shown that the recently elaborated SRM inductive principle provides
a very general, theoretically founded tool to give the solution to the problem. However, the
problem of bad generalization is not new; in fact, Hadamard, at the beginning of the XX.
century, observed that solving the linear operator (mapping from a metric space M1 to a
metric spaceM2) equation:

Lh = H, h ∈M1, H ∈M2

is ill-posed3 in the sense that, even if there exists a unique solution, a small deviation of
H → Hδ (e.g. by some noise level δ) can lead to large deviations of the solution hδ from
the ideal solution h. This may happen also in the case where the level of noise corruption δ
decreases to zero. To overcome this problem, in 1962-63 regularization theory was proposed
by Tikhonov [141], Ivanov [55] and Philips [96]. With the aim of solving ill-posed problems,
it was discovered that minimizing a regularized functional

Rreg(h) = ||Lh−Hδ||2 + ζδΩ(h),

3 Under some (very general) conditions.
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where Ω(h) is some functional with some specific regularizing properties and ζδ is an appro-
priately chosen, noise dependent constant, leads to the sequence of solutions that converges
to the desired solution h as δ tends to zero. In our case the concepts of regularization theory
and ERM inductive principle lead to the problem of minimizing the following functional:

Rreg(h) = Remp + ξΩ(h) (2.8)

where ξ is a regularization constant to control the trade off between model complexity and
approximation accuracy in order to achieve good generalization performance. Several al-
gorithms which lead to minimizing a similar regularized risk functional were described in
[8, 45].

In this thesis, we will construct approximation functions of the form (2.2) belonging to
some functional Hilbert space, more specifically to a Reproducing Kernel Hilbert Space H
described in the following section. Evgeniou et al. [23] have shown the connection between
the estimation methodologies motivated by the SRM principle and regularization theory,
respectively, in the case that an approximation of the desired functional dependency g (2.1)
is considered to belong to a RKHS. Inspired by the SRM principle they proposed a learning
strategy based on the construction of a nested structure of sets of functions ordered with
respect to an increasing real-valued sequence a1 < a2 < . . . < aP associated with a norm
‖.‖H defined in H. The sequence of sets of functions has the form:

F1 ⊂ F2 ⊂ . . . ⊂ FP , (2.9)

where {Fj = {f ∈ RKHS : ‖f‖H ≤ aj}}Pj=1. By construction, the capacity of the sets of

functions {Fj}Pj=1 (in terms of Vγ dimension) will increase according to the increase of ai
[23, 22]. Having this nested structure, we need to minimize the empirical risk (2.5) over
the individual sets of functions {Fj}Pj=1; i.e. to solve the following constrained minimization
problem for all j = 1, . . . P

min
f∈H

1

n

n
∑

i=1

V (yi, f(xi))

subject to : ‖f‖2H ≤ a2j (2.10)

The problem can be solved by the technique of Lagrange multipliers leading to the minimiza-
tion of the form

1

n

n
∑

i=1

V (yi, f(xi)) + ξj(‖f‖2H − a2j ) ∀j = 1, . . . P (2.11)

with respect to f and maximization with respect to Lagrange multiplier ξj ≥ 0. Assuming
the structure (2.9) this will provide us the sequence of the solutions {f ∗j }Pj=1 and the sequence

of the corresponding optimal Lagrange multipliers {ξ∗j }Pj=1. Then, the optimal solution fopt
selected from the set of all solutions {f ∗j }Pj=1 is given by the trade off between two terms of
the right hand side of (2.6); i.e. the empirical error and the capacity of the corresponding
functional subsets. However, in practice, this theoretical concept is difficult to implement
mainly because of computational difficulties when the solutions of a large number of the
constrained optimization problems (2.10) have to be found4. To overcome this difficulty
Evgeniou et al. [23] proposed to search for the minimum of

1

n

n
∑

i=1

V (yi, f(xi)) + ξ‖f‖2H (2.12)

4 Other practical difficulties associated with the direct implementation of SRM principle were discussed in
[23].
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instead. This is motivated by the fact that having the optimal value ξ∗j to find the optimal
solution fopt we could simply replace (2.11) by the unconstrained minimization problem

1

n

n
∑

i=1

V (yi, f(xi)) + ξ∗j ‖f‖2H. (2.13)

Thus, in practice we need to solve (2.12) for different values of ξ and to pick up the best ξ
usually based on some model selection criteria. We have to stress that the main goal of the
approach motivated by the SRM principle was to show the connection between this theo-
retically well founded statistical learning principle and its possible practical approximation.
For more detailed discussions on implementation of the SRM principle and some aspects of
replacing problem (2.10) by (2.12) we refer the reader to [153, 23].

In the last section of this introductory chapter we will give the basic formal definition
and describe some of the properties of a RKHS. We will also provide a general form to the
solution of (2.12) when a functional space is a RKHS.

2.4 Learning in Kernel-Induced Feature Spaces

Before we will proceed to the definition and description of the properties of a RKHS we will
review the definition of real Hilbert and L2(X ) spaces.

Definition: A Hilbert space is a separable real inner product space that is complete in the
metric derived from its inner product. An inner product space V is separable if it
contains a sequence of elements m1,m2, . . . that span a dense subspace of V.

Definition: Let X be a compact subset of RN . A Hilbert space L2(X ) is the set of real valued
functions f defined over X for which

‖f‖L2
=

[
∫

X
f(x)2dx

]1/2

.

The formula

〈f, g〉 =
∫

X
f(x)g(x)dx

defines an inner product on L2(X ).

2.4.1 Reproducing Kernel Hilbert Space

A RKHS is a Hilbert space H of the functions defined over some compact set X ⊂ RN with
the property that all the evaluation functionals Tx[f ] = f(x), ∀f ∈ H are bounded [4].

To better understand this formal definition we will now provide several basic properties of
a RKHS. First, consider a symmetric function K(x,y) of two variables satisfying the Mercer
theorem conditions [76]:

Theorem (Mercer): Let X be a compact subset of RN . Suppose K is a continuous symmetric
function such that the integral operator TK : L2(X )→ L2(X ),

(TKf)(.) =

∫

X
K(.,x)f(x)dx (2.14)

is positive, i.e. for all f ∈ L2(X ) we have

∫

X×X
K(x,y)f(x)f(y)dxdy ≥ 0.
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Then the kernel function K(x,y) can be expanded in a uniformly convergent series

K(x,y) =
M
∑

i=1

λiψi(x)ψi(y) M ≤ ∞, (2.15)

where {ψi(.)}Mi=1, are the normalized eigenfunctions (and so {‖ψi‖L2
= 1}Mi=1) of the

integral operator TK (2.14) and {λi > 0}Mi=1 are the corresponding positive eigenvalues.
In the case M =∞ the series converges absolutely and uniformly for almost all (x, y).

The fact that for any such positive definite kernel, there exists a unique RKHS is well
established by the Moore-Aronszajn theorem [4]. Further, the form K(x,y) has the following
reproducing property

f(x) = 〈f(.),K(x, .)〉H ∀f ∈ H, (2.16)

where 〈., .〉H is the scalar product in H. The function K is called a reproducing kernel for
H (hence the terminology RKHS). This reproducing property implies that the evaluation
functionals defined by Tx[f ] = f(x), ∀f ∈ H are linear and bounded. The boundedness
means that there exists Mx ∈ R+ such that |Tx[f ]| ≤Mx‖f‖H. In our case it simply means
that by using the Cauchy-Schwarz inequality we have

|Tx[f ]| = |f(x)| = 〈f(.),K(x, .)〉H ≤ ‖K(x, .)‖H‖f‖H =Mx‖f‖H ∀f ∈ H,

where ‖.‖H is a norm defined in H and its exact form will be described below.
It follows from Mercer’s theorem that the sequence {ψi(.)}Mi=1 creates an orthonormal

basis in H and we can express any function f ∈ H as f(x) =
∑M

i=1 diψi(x) for some di ∈ R.
However, it is worth noting that, we can also construct a RKHS by choosing a sequence
of linearly independent functions (not necessary orthogonal) {φi(x)}Mi=1 and positive num-
bers {αi}Mi=1 to define a uniformly convergent series (in the case of M = ∞ absolutely and
uniformly convergent)

K(x,y) =
M
∑

i=1

αiφi(x)φi(y). (2.17)

This construction also gives the connection between the RKHS and stochastic processes
[156] where the K is assumed to represent the correlation function of a zero-mean Gaussian
stochastic process evaluated at points x and y. Similar to the orthogonal basis case we can
express any function f ∈ H in the form f(x) =

∑M
i=1 biφi(x) for some bi ∈ R. This allows us

to define a scalar product in H:

〈h(x), f(x)〉H = 〈
M
∑

i=1

aiφi(x),
M
∑

i=1

biφi(x)〉H ≡
M
∑

i=1

aibi
αi

and the norm

‖f‖H = 〈f(x), f(x)〉1/2H =

(

M
∑

i=1

b2i
αi

)1/2

. (2.18)

The motivation to define this kind of norm is that we need to satisfy the reproducing property
(2.16) of the kernel function K(x,y); i.e.

f(x) = 〈f(y),K(x,y)〉H =
M
∑

i=1

biαiφi(x)

αi
=

M
∑

i=1

biφi(x)

Rewriting (2.17) in the form

K(x,y) =
M
∑

i=1

√
αiφi(x)

√
αiφi(y) = (Φ(x).Φ(y)) (2.19)
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it becomes clear that any kernel K(x,y) also corresponds to a canonical (Euclidean) dot
product in a possibly high dimensional space F where the input data are mapped by

Φ : X → F
x→ (

√
α1φ1(x),

√
α2φ2(x), . . . ,

√
αMφM (x))

(2.20)

The space F is usually denoted as a feature space and {{φi(x)}Mi=1,x ∈ X} as feature map-
pings. The number of basis functions φi(.) also defines the dimensionality of F .

2.4.2 Representer Theorem

One of the main results in the theory of learning in a RKHS H was given by Kimeldorf and
Wahba [65, 156, 157] and is known as the

Representer Theorem (simple case): Let the loss function V (yi, f) be a functional of f which
depends on f only pointwise, that is, through {f(xi)}ni=1 – the values of f at the data
points. Then any solution to the problem: find f ∈ H to minimize

1

n

n
∑

i=1

V (yi, f(xi)) + ξ‖f‖2H (2.21)

has a representation of the form

f(x) =
n
∑

i=1

ciK(xi,x), (2.22)

where {ci}ni=1 ∈ R.

In regularization theory, ξ is a positive number (regularization term) to control the trade-
off between approximating properties and the smoothness of f and the squared norm ‖f‖2H
is sometimes called the ‘stabilizer’. Moreover, the above results can be extended even for
the case when K is positive semidefinite. In such a case a RKHS H contains a subspace of
functions f with a zero norm ‖f‖H (the null space). Kimeldorf and Wahba have also shown
[65, 156, 157] that in such a case the solution of (2.21) has the more general form

f(x) =
n
∑

i=1

ciK(xi,x) +
l
∑

j=1

djζj(x), (2.23)

where the functions {ζj(.)}lj=1 span the null space of H and the coefficients {ci}ni=1, {dj}lj=1
are again given by the data. In the thesis we will consider only the case when l = 1 and
ζ1(x) = const ∀x.



3. NONLINEAR, KERNEL-BASED PCA

Linear principal component analysis (PCA) is a well established, and one of the oldest,
techniques of multivariate analysis. The central idea of PCA is the dimensionality reduction of
a data set when there exist some correlations among the variables. PCA transforms a number
of correlated variables into a smaller number of orthogonal, i.e. uncorrelated, variables called
principal components. Thus the reduction or so-called feature extraction allows us to restrict
the entire space to a subspace of a lower dimensionality. Before we give the description of
the nonlinear, kernel-based PCA in some possibly high-dimensional feature space F we will
describe the standard linear PCA algorithm and its kernel version [60, 171].

3.1 Linear PCA

Let X̃ denote an N -dimensional random vector representing the data domain of interest and
assume we have n samples (realizations) {xi}ni=1 ∈ X ⊆ RN of X̃. Further, assume the
random vector X̃ has zero-mean (i.e. E[X̃] = 0, where E represents statistical expectation)
and that the sample-based estimate of the positive semidefinite (N ×N) covariance matrix
C = E[X̃T X̃] of X̃ has the form

Ĉ =
1

n

n
∑

i=1

xix
T
i =

1

n
XTX, (3.1)

where X represents the (n×N) matrix consisting of the observed samples. The main goal of
PCA is to find the direction of maximum variance, i.e. the directions where the data x have
maximal spread. This is given by the solution of the eigenvalue problem

Cu = λu (3.2)

which has a nontrivial solution only for special values of λ that are called eigenvalues of the
covariance matrix C. The associated unit vectors u are called eigenvectors. Numerically the
problem is solved by the diagonalization of the (N × N) matrix Ĉ leading to the estimate
of the sequence of eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0 and the corresponding eigenvectors
u1,u2, . . . ,uN .

After the extraction of the eigenvalues and eigenvectors we may project the original data
onto p ≤ N eigenvectors based on some a priori given criterion. The projection is simply
given by P = XU where U is a (N × p) matrix with columns created by the selected p
eigenvectors.

3.1.1 Kernel PCA

It is not uncommon in real world problems that the number of observed variables significantly
exceeds the number of measurements (samples). In such a case X will be a ‘wide’ (n << N)
matrix, usually consisting of highly collinear data; i.e. there exist linear or near-linear depen-
dencies among the variables. Further, if the number of variables N is high the diagonalization
and the storage of the (N ×N) sample covariance matrix Ĉ will lead to high computational
and memory requirements. Under the assumption that the first p < n principal components
cover almost all variance in the observed data structure the kernel based approaches to the
extraction of principal components can be used [171]. We will describe the method when the
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principal components are extracted based on the diagonalization of K = XXT the (n × n)
matrix as this will have the straightforward connection to the nonlinear kernel-based PCA
algorithm described in the next section.

Assuming that in (3.2) we replaced the covariance matrix C by its sample estimate (3.1)
we can write

Ĉu =
1

n

n
∑

i=1

xix
T
i u =

1

n

n
∑

i=1

aixi,

where {ai = xTi u = (xi.u)}ni=1 represents the canonical dot product between the xi and u.
Thus, using (3.2) we can see that for λ 6= 0 we have u = 1

λn

∑n
i=1 aixi; i.e. all the non-zero

solutions of (3.2) corresponding to non-zero values of λ have to lie in the span of the data
samples {xi}ni=1. This allows us to rewrite (3.2) for the sample estimate Ĉ in the form

xTj Ĉu = λxTj u for all j = 1, 2, . . . n

or in the matrix form
XĈu = λXu.

Using the fact that XĈu = 1
nXX

TXu = 1
nKXu we obtain the eigenvalue problem

Kũ = nλũ = λ̃ũ (3.3)

solution of which will lead to the extraction of the eigenvectors ũ = Xu and eigenvalues
λ̃ = nλ of the K matrix. At the beginning of the previous section we assumed that the
individual observed variables are zero-mean. Having constructed the K matrix from the
given raw data we can construct its ‘centralized’ version corresponding to the kernel matrix
of the centralized data by [172, 121]

K← (I− 1

n
1n1

T
n )K(I− 1

n
1n1

T
n ), (3.4)

where I is n dimensional identity matrix and 1n represent the vector of ones of length n.
Because the matrix (I− 1n1n1Tn ) is of rank (n−1) the centralized K matrix will have rank less
than or equal to (n − 1); i.e. rank(K) ≤ (n − 1). Effectively it means that by solving (3.3)
using the centralized K matrix, we may obtain up to (n− 1) different non-zero eigenvectors
in the case n ≤ N and up to the N eigenvectors in the case n > N . Further, using the
eigenvalue problem equation (3.2) we can write

XT ũ = XTXu = nλu.

However, due to the fact that (nλ)−2ũTXXT ũ = (nλ)−1 we need to correctly normalize the
XT ũ vectors to keep the eigenvectors u orthonormal. This normalization leads to the form

u = (nλ)−1/2XT ũ = λ̃−1/2XT ũ, (3.5)

where ũ, λ̃ are given by the solution of (3.3). After the extraction of p ≤ (n − 1) non-zero
eigenvectors {ũi}pi=1 and corresponding eigenvalues {λ̃i}pi=1 we can rewrite (3.5) in matrix
form

U = XT ŨΛ̃−1/2,

where columns of Ũ are created by the eigenvectors {ũi}pi=1 and Λ̃ is a diagonal matrix
diag(λ̃1, λ̃2, . . . , λ̃p). The projection of the original data {xi}ni=1 onto the desired principal
directions is now given by

P = XXT ŨΛ̃−1/2 = KŨΛ̃−1/2 = ŨΛ̃1/2, (3.6)

where the last equality follows from equation (3.3).
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3.2 Nonlinear, Kernel-based PCA

Consider now that after observing the data {xi}ni=1 ∈ X ⊆ RN we apply a nonlinear mapping
(2.20); i.e mapping of the following form

Φ : X → F , x→ Φ(x)

where F is an M ≤ ∞ dimensional feature space corresponding to some kernel function
K(x,y). The (linear) PCA problem in F can be formulated as the diagonalization of an
n-sample estimate of the (M ×M) covariance matrix

ĈF =
1

n

n
∑

i=1

Φ(xi)Φ(xi)
T =

1

n
ΦTΦ, (3.7)

where Φ(xi) are centered nonlinear mappings of the input variables {xi}ni=1 ∈ X and the
(n×M) matrix Φ is their matrix representation. Using the same derivation as described in
the previous section the equivalent eigenvalue problem can be derived

Kũ = nλũ = λ̃ũ, (3.8)

where K1 now represents the symmetric (n× n) Gram matrix with the elements

Kij = (Φ(xi).Φ(xj)) = K(xi,xj). (3.9)

In fact, using a very similar derivation, this Kernel PCA algorithm was described by Schölkopf
et al. [121]. Another kernel-based description of PCA can be easily recovered from the
method of snapshots derived by Sirovich [126] for a discrete point approximation of the con-
tinuous Karhunen-Loève expansion. Note, that using the polynomial kernel K(x,y) = (x.y)
(Appendix A.3) leads to the same (linear) kernel-based PCA as described in the subsection
(3.1.1).

Again, using the derivation from the previous section leading to (3.5), we can express the
desired eigenvectors u of the covariance matrix ĈF in a feature space F as

u = λ̃−1/2ΦT ũ

or in the matrix form
U = ΦT ŨΛ̃−1/2, (3.10)

where similar to the previous subsection the columns of Ũ are created by the extracted
eigenvectors {ũi}pi=1 ofK and Λ̃ is a diagonal matrix diag(λ̃1, λ̃2, . . . , λ̃p) of the corresponding
eigenvalues. The k-th nonlinear principal component of x is now given as the projection of
Φ(x) onto the eigenvector uk

βk(x) ≡ Φ(x)Tuk = λ̃
−1/2
k Φ(x)TΦT ũk = λ̃

−1/2
k

n
∑

i=1

ũkiK(xi,x). (3.11)

Re-writing this projection in matrix form we have, for the projection of original data points
{xi}ni=1,

P = ΦU = ΦΦT ŨΛ̃−1/2 = KŨΛ̃−1/2 = ŨΛ̃1/2. (3.12)

In practice we are usually also interested in the projection of test data points {xi}n+nt
i=n+1

which were not used to estimate the eigenvectors and eigenvalues. This can be simply given
by

Pt = ΦtΦ
T ŨΛ̃−1/2 = KtŨΛ̃

−1/2, (3.13)

1 Because we assume centered nonlinear mappings {Φ(xi)}
n
i=1 we need to centralize the matrix K. Cen-

tralization in a feature space F is again given by (3.4) [121].



3. Nonlinear, kernel-based PCA 19

where Φt is the (nt ×M) matrix of the mapped testing data points {Φ(xi)}n+nt
i=n+1 and Kt is

the (nt × n) ‘test’ matrix whose elements are

(Kt)ij = (Φ(xi).Φ(xj)) = K(xi,xj),

where {xi}n+nt
i=n+1 and {xj}nj=1 are testing and training points, respectively. The centralization

of Kt is given by [172, 121]

Kt ← (Kt −
1

n
1nt1

T
nK)(I− 1

n
1n1

T
n ), (3.14)

where I is again n dimensional identity matrix and 1nt represent the vector of ones of the
length nt.

3.2.1 The Estimation of Kernel Eigenfunctions

In this subsection we focus on the estimation of the eigenfunctions forming the expansion of
a kernel function K(x,y). This will provide us with the connection between these estimates
and the projections (3.12) onto the eigenvectors estimated by kernel PCA.

Based on Mercer’s theorem (subsection 2.4.1) each kernel function K(x,y) can be ex-
panded into a uniformly convergent series (2.15); i.e.

K(x,y) =
M
∑

i=1

λiψi(x)ψi(y) M ≤ ∞

where {ψi(.)}Mi=1 are the normalized eigenfunctions of the integral operator

∫

X
K(y,x)ψi(x)dx = λiψi(y).

The normalization condition implies the constraint

∫

X
ψi(x)ψj(x)dx = δij ,

where δij is the Kronecker delta function. Assuming we use a simple quadrature rule with
weights equal to 1/n, where n represents the number of equally spaced data points {xk}nk=1,
we can write

1

n

n
∑

k=1

K(y,xk)ψi(xk) ≈ λiψi(y) (3.15)

and
1

n

n
∑

k=1

ψi(xk)ψj(xk) ≈
∫

X
ψi(x)ψj(x)dx = δij .

Now, solving (3.15) at the data points {xk}nk=1, i.e. using the Nyström method for the solution
of integral equations [18], we obtain the eigenvalue problem (3.8). This simply means that
we approximate the kernel function expansion K(x,y) by

K(x,y) =
M
∑

i=1

λiψi(x)ψi(y) ≈
n
∑

i=1

nλi
ψi(x)√
n

ψi(y)√
n
.

The approximation to the pth eigenfunction is then given by ψp(xk) ≈ 1√
n
ũpk where ũpk is

the kth element of the pth eigenvector given by (3.8). It is also easy to see that there is the

relation {λi ≈ λ̃i
n }ni=1 where {λ̃i}ni=1 are the eigenvalues of the Gram matrix K.

Thus, we can see that the projections (3.12) are nothing other than the scaled eigen-
function {ψi(x)}ni=1 estimates. This different scaling for the estimate of the ith eigenfunction
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ψi(x) is given by
√
λi. This fact was recently pointed out in [164, 165]. Moreover, the authors

in [173, 164, 165] studied the more realistic case when the eigenfunctions are estimated based
on the observed data distributed according to some density function p(x). They proposed to
use the same estimate as described above, however, using the finite samples drawn according
to p(x). This effectively leads to the estimate of the modified eigenfunctions p1/2(x)ψi(x)
due to the fact that we assume the generalized eigenproblem

∫

X
K(y,x)p(x)ψi(x)dx = λiψi(y)

with the orthonormality constraint

∫

X
ψi(x)p(x)ψj(x)dx = δij .

3.3 An EM Approach to Kernel PCA

Although, the diagonalization of the K matrix in the eigenvalue problem (3.8) (or (3.3))
provides a unique solution to the estimation of eigenvectors and eigenvalues, in the case of
a high number of data points the problem is computationally burdensome2. Fortunately, in
practice, we usually do not need to extract the whole spectrum of eigenvectors and eigenval-
ues, rather the extraction only of the first leading eigenvalues and eigenvectors is desired. In
such a case, several algorithms for the more efficient extraction of a subset of eigenvectors
and eigenvalues exist. An example is the power method [162, 36] which extracts eigenvec-
tors one after an other, in decreasing order of their corresponding eigenvalues. This method
scales as O(p2) where p is the number of extracted eigenvectors. Another method, based on
a probabilistic formulation of PCA using the expectation-maximization (EM) algorithm [19]
for the extraction of desired principal components was proposed in [113, 143]. The aim of
this section is to provide a description of the modification of the EM approach to PCA in
the case of nonlinear (kernel-based) PCA. This algorithm was proposed in [107].

3.3.1 Probabilistic PCA

A probabilistic PCA model in the input space RN is defined as the latent variable model

x = Qy + η, (3.16)

where Q is an (N × p) parameter matrix and the observation vector and latent variable
vectors are given as x ∈ RN and y ∈ Rp, respectively. The latent variables are assumed to
be normally distributed with zero mean and identity covariance; i.e. y ∼ N(0, I). The zero
mean noise η ∼ N(0,Σ) is also normally distributed with a covariance matrix defined as Σ.
Further, we assume that the latent and noise variables are independent and also that their
samples are iid. In such a case model (3.16) reduces to a single Gaussian model for x; i.e.
x ∼ N(0,QQT + Σ). If the Σ matrix is restricted to be a diagonal matrix with positive
elements the model is known as factor analysis. Further, if we assume that Σ = limσ2→0 σ

2I

the PCA model is obtained. In this case the noise η is assumed to be isotropic (equal in all
directions) and infinitesimally small.

Given an observation vector x we are interested in the posterior probability distribution
P (y|x). Assuming that the noise is distributed as η ∼ N(0, σ2I) and using Bayes’s rule we
can write for the posterior density function [143, 114]

p(y|x) = N((QTQ+ σ2I)−1QTx, σ2(QTQ+ σ2I)−1).

2 The direct diagonalization of a symmetric (n× n) matrix scales as O(n3).
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It is now clear that as the noise level in the model becomes infinitesimal the posterior density
becomes a delta function

p(y|x) = N((QTQ)−1QTx,0) = δ(y − (QTQ)−1QTx)

and the EM algorithm is effectively a straightforward least squares projection [113, 114]

E− Step Y = (QTQ)−1QTX

M− Step Qnew = XYT (YYT )−1.

Where, now, we denoted the (N×n) matrix of data observations as X and the (p×n) matrix
of latent variables as Y.3

It has been shown in [143] that, in the case of infinitesimal small noise in our model, the
maximum-likelihood estimate of Q at convergence will be equal to

QML = UΛ1/2R, (3.17)

where the columns of the U matrix are the eigenvectors of the sample covariance matrix with
corresponding eigenvalues λ1, ..., λp being the diagonal elements of the diagonal matrix Λ,
and R is an arbitrary orthogonal rotation matrix. In [143], the authors also pointed out, that
taking the columns of RT to be equal to the eigenvectors of the QT

MLQML matrix, we can
recover the true principal axes.

3.3.2 EM approach to Kernel PCA

Motivated by the previously described probabilistic PCA results, in [107] we proposed an EM
approach to Kernel PCA which, similar to section 3.2, is based on the nonlinear mapping of
the input data to feature space F by a map Φ : X ⊆ RN → F .

Realizing that the Q matrix may by obtained by scaling and rotation of the U matrix
(3.17) consisting of eigenvectors computed by diagonalization of the sample covariance matrix
we can express the rth column of Q as Qr =

∑n
j=1 γ

r
jΦ(xj) and write it in matrix notation

as ΦTΓ, where the matrix Φ is the (n ×M) matrix which has individual rows consisting
of the vectors Φ(x1), . . . ,Φ(xn) of the centered mappings4 of the observed data and Γ is an
(n× p) matrix of the coefficients {γri : i = 1, . . . , n; r = 1, . . . , p}. Using the ‘kernel’ trick, i.e.
Φ(x1)

TΦ(x2) = K(x1,x2) we can see that the E-step will now be

Y = (ΓTKΓ)−1ΓTK. (3.18)

Now let us consider the M-Step. Denote the term YT (YYT )−1 by A. Then we may write

Qnew = ΦTA,

where Qnew = ΦTΓnew. Thus we have the M-step

Γnew = A = YT (YYT )−1. (3.19)

This choice of Γnew is unique for the case when theΦT matrix has rank(ΦT ) = n, otherwise it
is one of the possible solutions forΦTΓnew = ΦTA. Finally, after convergence of the proposed
kernel-based EM algorithm, the projection of the new point x onto the corresponding p
nonlinear principal components is given by

β(x) ≡ (QTQ)−1QTΦ(x) = (ΓTKΓ)−1ΓTk, (3.20)

3 To be consistent with the probabilistic PCA method as described in [113, 114, 143], here, we assume this
data structure, in spite of the fact that in the thesis we usually assume data samples creating the rows and
variables the columns.

4 Again, the centering in the feature space F can be carried out in a straightforward manner by ‘centering’
the kernel matrix K outlined in the previous sections (eqs. (3.4) and (3.14)).



3. Nonlinear, kernel-based PCA 22

where k is the vector [K(x1,x), ...,K(xn,x)]
T . This projection is up to the scaling and

rotation identical to the projection of the data point x using the eigenvectors of the covariance
matrix ĈF given by (3.11). In the next chapter these projections are used as input data to
rotationally and scaling invariant ordinary least squares regression method and in such a case
we even do not need to find true principal axes as given by Kernel PCA algorithm.

We already pointed out that the maximum likelihood estimate QML at convergence will
be of the form (3.17). Using this theoretical result, relation (3.10) and the fact that we
defined Q = ΦTΓ we can write

ΦTΓML = UΛ1/2R = ΦT ŨΛ̃−1/2Λ1/2R = ΦT ŨI−1/2n R,

where In is the diagonal (p × p) matrix with the elements on the diagonal equal to n and
ΓML denotes the matrix Γ corresponding to maximum likelihood estimate QML. Thus, at

convergence, the orthogonality of the ΓML = ŨI
−1/2
n R matrix will be achieved which may

be seen from the fact that

ΓT
MLΓML = RT I−1/2n ŨT ŨI−1/2n R = I−1n .

Further, it is easy to see that QT
MLQML = ΓT

MLKΓML = RTΛR and we may write the
projection of the training data points

P =
{

(QT
MLQML)

−1QT
MLK

}T
=
{

(RTΛR)−1RT I
−1/2
n ŨTK

}T
=

=
{

RTΛ−1I−1/2n ŨTK
}T

=
{

RTΛ−1I−1/2n Λ̃ŨT
}T

= ŨI
1/2
n R = ΓMLIn.

Similarly for the projection of testing data points we may write

Pt = KtŨI
−1/2
n Λ−1R = KtΓMLΛ

−1R

and it is easy to see that these projections are up to the scaling Λ1/2 and rotation RT

identical to the projections (3.12) and (3.13), respectively. In the next subsection we will
describe how the estimation of the eigenvalues {λi}pi=1 and consequently the normalization of
the projection to avoid the different scaling in the individual eigendirections can be achieved.
However, before that, we would like to make several notes about the proposed method for
performing kernel PCA.

Firstly, due to the use of Mercer kernels the method is independent of the dimensionality
of the input space. Secondly, the computational complexity, per iteration, of the proposed EM
method for Kernel PCA is O(pn2) where n is the number of data points and p is the number
of extracted components. Where a small number of eigenvectors require to be extracted and
there are a large number of data points available this method is comparable in complexity
to the iterative power method which has complexity O(n2). As we noted before, direct
diagonalization of a symmetricK matrix to solve the eigenvalue problem (3.8) has complexity
of the order O(n3). In [111, 107] we compared these three methods in terms of the number
of floating point operations and we observed that the proposed EM approach to Kernel PCA
may also be profitable when the extraction of a higher number of eigenvectors is needed.
Moreover, in [111], on several examples the convergence of the eigenvectors extracted by the
proposed approach to the eigenvectors obtained by the solution of the ‘classical’ kernel PCA
(section 3.2) was demonstrated.

From the equations (3.18) and (3.19) we can also see that individual EM steps can be
performed without storing the whole (n×n) matrix K. In such a case memory requirements
scale as O(p2)+O((p+1)n). However, this will slow down the computations as the elements
of K have to be computed repeatedly. We discuss possible implementations of the algorithm
in Appendix A.1.
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3.3.3 Eigenvalues Estimation

From the definition of our probabilistic PCA model it is clear that the latent variables y have
identity covariance matrix. Thus at convergence the projection of the observed data to the
p-dimensional subspace will lead to the sphering of the projected data. Using the fact that

at convergence ΓML = ŨI
−1/2
n R is an orthogonal matrix, we will show how the matrix Λ

can be recovered.
The diagonalization of the symmetric matrix K2 instead of K leads to the same eigenvec-

tors and squared eigenvalues [78, 119]. Further the matrix 1
nK

2 can be seen as the sample
estimate of the covariance matrix of the empirical kernel map Φemp defined for a given set of
points {xi}ni=1 as

Φemp : RN → Rn

x→ K(.,x)|{x1,...,xn} = (K(x1,x), . . . ,K(xn,x)).

This fact was recently also used in [79] where a similar EM algorithm to Kernel PCA was
proposed. It is easy to see that applying the defined Φemp mapping on all data points will
lead to the construction of the Gram matrix K. However, this is now supposed to be a data
matrix with the n observations in rows and n variables in columns. Further note, that the
centralization procedure (3.4) provides the matrix with zero-mean rows and columns [172].
Thus, we can formulate the eigenvalue problem

1

n
KTKũ =

1

n
K2ũ = λ2ũ,

where the centralized K matrix is used and ũ, λ̃ = nλ are also the solutions of (3.8).
In the next step we can take the orthonormal basis created by orthogonalization of the

columns of Γ and project the observed data to the p-dimensional subspace defined by this
orthonormal matrix Γorth. By applying standard PCA on the covariance matrix of the
projected data Y = KΓorth we can recover the desired squared eigenvalues of the covariance
matrix ĈF (3.7).



4. KERNEL-BASED REGRESSION

4.1 Introduction

In this chapter the construction of the estimates of desired functional dependencies g (2.1)
in a RKHS H will be described. Although different regression models will be constructed the
same variational problem of finding the estimate f(x) ∈ H (2.2) minimizing the functional
(2.21) will be assumed. We have already mentioned that, based on Representer Theorem
(subsection 2.4.2), the solution to (2.21) is of the form

f(x) =
n
∑

i=1

ciK(xi,x) =
n
∑

i=1

ciΦ(xi)
TΦ(x), (4.1)

where Φ : X ⊆ RN → F again represents a mapping to M ≤ ∞ dimensional feature space F
given by the selected kernel function. We also consider that Φi(x) =

√
αiφi(x), x ∈ X where

{φi(.)}Mi=1 is a set of linearly independent functions (not necessary orthogonal) creating the
basis of H. Thus, any f ∈ H can be expanded into the form

f(x) = (
n
∑

i=1

ciΦ(xi))
TΦ(x) = wTΦ(x) =

M
∑

i=1

wi
√
αiφi(x) =

M
∑

i=1

biφi(x) (4.2)

and we can see that (4.1) can also be interpreted as an estimate of a linear regression model1

in F where theM dimensional vector w =
∑n

i=1 ciΦ(xi) now represents a vector of regression
coefficients. Using the norm definition (2.18) we can write

‖f‖2H =
M
∑

i=1

b2i
αi

=
M
∑

i=1

(wi
√
αi)

2

αi
=

M
∑

i=1

w2i = ‖w‖2.

The squared norm ‖f‖2H actually stands for a large class of smoothness functionals Ω(f)
defined over elements of the form (4.2). It simply means, that the smoothing properties of a
final estimate are determined by the appropriate choice of a kernel function K(x,y) which
induces a RKHS and a corresponding norm ‖f‖H. We demonstrate this on an example of
translation invariant kernels K(x− y) in Appendix A.4.

The concept of regularization also provided the connection [33] between Regularization
Networks and Support Vector Regression (section 4.5) where the minimization of the risk
functional

1

n

n
∑

i=1

V (yi, f(xi)) + ξ‖w‖2 (4.3)

is assumed. However, the idea of a ‘flat’ linear regression estimate; i.e. the penalization
of large in absolute value weights {wi}Mi=1 through the regularization term ξ, was rather
motivated by the aim of finding a separating hyperplane of maximum distance between classes
used in the pattern recognition domain [153]. It has been stressed later that choosing the
flattest function in a feature space can, based on the smoothing properties of the selected
kernel function, lead to a smooth function in the input space [129].

1 The expansion (4.1) is usually called the dual representation of f whilst (4.2) is called the primal repre-
sentation of f .
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To summarize this section, we can see that the solution of (4.1) given by the Representer
Theorem can be also formulated in its primal representation (4.2). This simply means that
having the finite set of data samples {(xi, yi)ni=1 ∈ X × Y} we approximate the desired
functional dependency g (2.1) by the estimate given by the solution of a linear regression
model

y = Φw + η, (4.4)

where we assume η is a (n × 1) vector of error terms whose elements have equal variance
σ2 and are independent of each other, and Φ = [Φ(x1),Φ(x2), . . . ,Φ(xn)]

T represents the
(n×M) matrix of predictors (regressors) in F . Assuming that the appropriate kernel mapping
was selected, we need to guarantee the smoothness of the final estimate by choosing a flat
regression function in F . In the case of least-squares estimates this will bring us to the
problem of multicollinearity.

4.1.1 Multicollinearity and Regularized Least-Squares Regression Models

One of the main problems in multiple regression is a linear or near-linear dependence of the
regressors – multicollinearity. The multicollinearity of regressors is a serious problem that
can dramatically influence the usefulness of a regression model. Multicollinearity results in
large variances and covariances for the least-squares estimators of the regression coefficients.
Multicollinearity can also produce estimates of the regression coefficients that are too large
in absolute values (Appendix A.2). Thus the values and signs of estimated regression co-
efficients may change considerably given different data samples. This effect can lead to a
regression model which fits the training data reasonably well, but in general bad general-
ization of the model can occur. This fact is in a very close relation to the requirement of
choosing the flattest function in a feature space stressed in the previous section. In fact, in
a kernel-type of regression we usually nonlinearly transform the original data to the high
dimensional space whose dimension M is in many cases significantly higher than the number
of observations; i.e. M À n. In such a case, there are many linear as well as possibly many
approximate dependencies among the regressors. This can be easily seen from the fact that
in the model (4.4), the rank(Φ) ≤ n. Further, in the case of polynomial kernels of the type
K(x,y) = ((x.y) + c)d (Appendix A.3) the existing input space multicollinearities will be
exactly ‘mapped’ into a feature space representation.

There exist several methods to deal with multicollinearity. Generally they are based on the
requirement to shrink the solution to the regression from the areas of lower data spread. From
a statistical point of view this leads to a biased but lower variance estimate of the regression
coefficients. These methods create a class of regression techniques usually called shrinkage
or regularized regression. We may distinguish two main principles in their construction. The
first principle is based on the transformation of the original regressors into latent variables
(LV). LV are usually created to be orthogonal with the aim of reflecting the ‘real’ intrinsic
structure of the original regressors. Principal Component Regression (PCR) and Partial Least
Squares (PLS) regression are the main techniques belonging to this category. In contrast to
LV techniques, Ridge Regression (RR) operates on the original regressors and the desired
lower variance estimate is achieved by penalizing the weights with the aim of shrinking the
solution to the origin. Some other techniques belonging either to the first or second category
are discussed in [60, 131, 140, 37].

In the thesis we discuss RR, PCR and PLS Regression approaches. Using the theoretical
basis of these techniques in input space, we discuss their counterparts in a kernel defined
feature space. In the next three sections we provide a brief description of these methods
followed by their kernel based implementation.
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4.2 Kernel Principal Component Regression

PCR is based on the projection of the original regressors onto the principal components
extracted by PCA. As there is a straightforward connection between PCR in input space
and its kernel-based implementation [108, 110] we directly start with a feature space linear
regression model (4.4) and further assume that regressors {Φj(x)}Mj=1 are zero-mean. Thus

ΦTΦ is proportional to the sample covariance matrix and Kernel PCA can be performed to
extract its M eigenvalues {λ̃i}Mi=1 and corresponding eigenvectors {ui}Mi=12 (3.10). Having
the eigensystem {λ̃i,ui}Mi=1 the spectral decomposition [60] of ΦTΦ has the form

ΦTΦ =
M
∑

i=1

λ̃iu
i(ui)T . (4.5)

The k-th principal component of Φ(x) is given by (3.11). By projection of all original regres-
sors onto the principal components we can rewrite (4.4) as

y = Bv + η, (4.6)

where B = ΦU is now an (n ×M) matrix of transformed regressors and U is an (M ×M)
matrix whose k-th column is the eigenvector uk. The columns of the matrix B are now
orthogonal and the least squares estimate of the coefficients v becomes

v̂ = (BTB)−1BTy = Λ̃
−1
BTy, (4.7)

where Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃M ). It is worth noting, that PCR, as well as other biased regres-
sion techniques, is not invariant to the relative scaling of the original regressors [26]. However,
similar to ordinary least squares (OLS) regression, the solution of (4.6) does not depend on
a possibly different scaling in individual eigendirections used in the Kernel PCA transforma-
tion. Further, the results obtained using all principal components—the PCA projection of
the original regressor variables—in (4.6) is equivalent to that obtained by least squares using
the original regressors. In fact we can express the estimate ŵ of the original model (4.4) as

ŵ = Uv̂ = U(BTB)−1BTy = (ΦTΦ)−1ΦTy =
M
∑

i=1

λ̃−1i u
i(ui)TΦTy

and its corresponding variance-covariance matrix [60] as

cov(ŵ) = σ2U(BTB)−1UT = σ2UΛ̃
−1
UT = σ2

M
∑

i=1

λ̃−1i u
i(ui)T . (4.8)

where we used the fact that y ∼ N(Φw, σ2I). To avoid the problem of multicollinearity, PCR
uses only some of the principal components. It is clear from (4.8) that the influence of small
eigenvalues can significantly increase the overall variance of the estimate. PCR simply deletes
the principal components corresponding to small values of the eigenvalues λ̃i. The penalty
we have to pay for the decrease in variance of the regression coefficient estimate is bias in
the final estimate. However, if multicollinearity is a serious problem, the introduced bias can
have a less significant effect in comparison to a high variance estimate. If the elements of v
corresponding to deleted regressors are zero, an unbiased estimate is achieved [60].

Using the first p nonlinear principal components (3.11) to create a linear model based on
orthogonal regressors in feature space F we can formulate the Kernel PCR model [108, 110]
in primal form

f(x) =
p
∑

k=1

vkβk(x) + b (4.9)

2 For the moment, we are theoretically assuming that n > M . Otherwise we have to deal with a singular
case (n ≤M) allowing us to extract only up to n− 1 eigenvectors corresponding to non-zero eigenvalues.
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or dual representation

f(x) =
n
∑

i=1

aiK(xi,x) + b, (4.10)

where {ai =
∑p

k=1 vkλ̃
−1/2
k ũki }ni=1 and b is a bias term.

We have shown that by removing the principal components whose variances are very small
we can eliminate large variances of the estimate due to multicollinearities. However, if the
orthogonal regressors corresponding to those principal components have a large correlation
with the dependent variable y such deletion is undesirable. On the data sets employed in this
thesis we experimentally demonstrated this fact in [111] and in section 4.7 we will provide
an example of these observations. There are several different strategies for selecting the
appropriate orthogonal regressors for the final model (see [60, 59] and ref. therein). In
section 4.7 we discuss approaches used in our experiments.

4.3 Partial Least Squares Regression

The PLS method [168, 170] was proposed and maintained a popular status as a regression
technique in its domain of origin – Chemometrics. Because the technique is not as widely
known as PCR or RR we firstly provide the description of linear PLS and in the next sub-
section we derive its nonlinear, kernel-based variant which we proposed in [112].

PLS regression is a technique for modeling a linear relationship between a set of output
variables (responses)3 {yi}ni=1 ∈ RL and a set of input variables (regressors) {xi}ni=1 ∈ X ⊆
RN . In the first step, PLS creates orthogonal, i.e. uncorrelated, latent variables which are
linear combinations of the original regressors whilst also utilizing existing correlations among
input and output variables. A least squares regression is then performed on the subset of
extracted latent variables. This leads to biased but lower variance estimates of the regression
coefficients compared to the OLS regression.

In the following X will represent the (n×N) matrix of n inputs and Y will stand for the
(n×L) matrix of corresponding L dimensional responses. Further we assume centered input
and output variables; i.e. the columns of X and Y are zero mean.

There exists several different modifications (see e.g [75, 73, 47, 17]) of the basic algorithm
for PLS regression originally developed in [168]. In its basic form the Nonlinear Iterative
Partial Least Squares (NIPALS) algorithm [167] is used to sequentially extract the latent
vectors t,u and weight vectors w, c from the X and Y matrices in decreasing order of
their corresponding singular values. What follows is a modification of the PLS algorithm as
described by [69]4

1. randomly initialize u

2. w = XTu

3. t = Xw, t← t/‖t‖

4. c = YT t

5. u = Yc, u← u/‖u‖

6. repeat steps 2. – 5. until convergence

7. deflate X,Y matrices: X← X− ttTX, Y ← Y − ttTY
3 Because, it may be also profitable to use PLS regression in situations when the modeling of several mutually

dependent responses is desired, we assume a more general multivariate version of PLS; i.e. L > 1.
4 In comparison to the classical NIPALS algorithm we normalize the latent (scores) vectors t,u rather than

vectors of weights c,w. This can be efficient only when the number of observation is greater than the number
of variables, however, as we will see later it is important for the Kernel PLS algorithm described below.
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The PLS regression is an iterative process, i.e. after extraction of one component the algo-
rithm starts again using the deflated matrices X and Y computed in step 7. Thus we can
achieve a sequence of models up to the point when the rank of X is reached. However, in
practice the technique of cross-validation is usually used to avoid underfitting or overfitting
caused by the use of too small or too large dimensional models. After the extraction of the p
components we can create (n× p) matrices T and U, (N × p) matrixW and (L× p) matrix
C consisting of the columns created by the vectors {ti}pi=1, {ui}pi=1, {wi}pi=1 and {ci}pi=1,
respectively, extracted during the individual iterations. The estimated matrix of regression
coefficients B will take the form [103]

B =W(PTW)−1CT , (4.11)

where P is the (N × p) matrix consisting of loadings vectors {pi = X
T ti}pi=1. Due to the

fact that pT
i wj = 0 for i > j and in general pT

i wj 6= 0 for i < j the matrix PTW is
upper triangular and thus invertible. Moreover, using the fact that tTi tj = 0 for i 6= j and
tTi uj = 0 for j > i in [103] the following equalities were proved5

W = XTU (4.12)

P = XTT(TTT)−1 (4.13)

C = YTT(TTT)−1. (4.14)

Substituting (4.12–4.14) into (4.11) and using the orthogonality of the T matrix columns we
can write the matrix B in the following form

B = XTU(TTXXTU)−1TTY. (4.15)

4.3.1 Kernel Partial Least Squares Regression

Again, assume the non-linear transformation of the input variables {xi}ni=1 into a feature
space F ; i.e. mapping Φ : xi ∈ RN → Φ(xi) ∈ F . Our goal is to construct a linear
PLS regression model in F . Effectively it means that we can obtain a non-linear regression
model where the form of nonlinearity is given by Φ(.). As we already noted, depending on
the nonlinear transformation Φ(.) the feature space can be high-dimensional, even infinite
dimensional when the Gaussian kernel function is used. However, in practice, we are working
only with n observations and we have to restrict ourselves to finding the solution of the linear
regression problem in the span of the points {Φ(xi)}ni=1. This situation is analogous to the
case when the input data matrix X has more columns than rows, i.e. we are dealing with
more variables than measured objects. This motivated several authors to introduce the (input
space) linear Kernel PLS algorithm [103] to speed up the computation of the components for
a linear PLS model. The idea is to compute the components from the (n× n) XXT matrix
rather than (N ×N) XTX matrix when n¿ N . Note that the same approach was also used
for the computation of the principal components in the previous chapter.

Now, motivated by the theory of RKHS described in section 2.4 we derive the algorithm
for the (non-linear) Kernel PLS model. From the previous section we can see that by the
connection of steps 2 and 3 and by using the (n ×M) matrix Φ of mapped input data we
can modify the PLS algorithm into the form6

1. randomly initialize u

2. t = ΦΦTu, t← t/‖t‖

3. c = YT t

5 In our case TTT is p dimensional identity matrix. This is simply a consequence of the normalization of
individual latent vectors {ti}

p
i=1.

6 This kernel form of a linear PLS algorithm was described in [69].
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4. u = Yc, u← u/‖u‖

5. repeat steps 2. – 5. until convergence

6. deflate ΦΦT ,Y matrices: ΦΦT ← (Φ− ttTΦ)(Φ− ttTΦ)T ,
Y ← Y − ttTY

Applying the same ‘kernel’ trick (3.9) as in section 3.2 we can write ΦΦT = K. Thus, instead
of an explicit nonlinear mapping, the kernel function can be used. The deflation of the Gram
matrix K in step 6 after extraction of the t component is now given by

K← (I− ttT )K(I− ttT ) = K− ttTK−KttT + ttTKttT , (4.16)

where I is an n dimensional identity matrix. We would like to point out that a similar Kernel
PLS algorithm can be also derived from the approach described in [103] which leads to the
extraction of the t,u components from the KYYT and YYT matrices. This approach can
be more fruitful when the multivariate Kernel PLS model is considered.

Similarly we can see that the matrix of the regression coefficients B (4.15) will have the
form

B = ΦTU(TTKU)−1TTY (4.17)

and to make prediction on training data we can write

Ŷ = ΦB = KU(TTKU)−1TTY = TTTY, (4.18)

where the last equality follows from the fact that the matrix of the components T may be
expressed as T = ΦR where R = ΦTU(TTKU)−1 [17, 47]. It is important to stress that
during the iterative process of the estimation of the components {ti}pi=1 we made the deflation
of the K matrix after the extraction of each new component t. Effectively it means that
T 6= KU. Thus, for predictions made on testing points {xi}n+nt

i=n+1 the matrix of regression
coefficients (4.17) have to be used; i.e.

Ŷt = ΦtB = KtU(TTKU)−1TTY,

where Φt is the matrix of the mapped test points and consequently Kt is the (nt × n) ‘test’
matrix whose elements are Kij = K(xi,xj) where {xi}n+nt

i=n+1 and {xj}nj=1 are testing and
training points, respectively.

At the beginning of the previous chapter we assumed a centralized PLS regression prob-
lem. To centralize the mapped data in a feature space F , we can simply used the equations
(3.4) and (3.14), respectively.

In conclusion, we would like provide two interpretations of the Kernel PLS model. For
simplicity we will consider the univariate Kernel PLS regression case (i.e. L = 1) and we
denote the (n× 1) vector d = U(TTKU)−1TTY. Now we can represent the solution of the
Kernel PLS regression in its dual form as

f(x) =
n
∑

i=1

diK(x,xi)

which agrees with the solution of the regularized formulation of regression (2.22) given by
the representer theorem in subsection 2.4.2. Using equation (4.18) we may also interpret the
Kernel PLS model as a linear regression model of the form (for more detailed interpretation
of linear PLS models we refer the reader to [31])

f(x) = c1t1(x) + c2t2(x) + . . .+ cptp(x) = c
T t(x) =

p
∑

i=1

citi(x), (4.19)

where the {ti(x)}pi=1 are the projections of the data point x onto the extracted p components
and c is the vector of weights given by (4.14).
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4.4 Kernel Ridge Regression

Ridge Regression is a well known standard statistical technique proposed in [50, 49]. Similar
to Kernel PCR a straightforward connection to linear RR allows us to directly start with
the Kernel RR description. Kernel RR deals with multicollinearity by assuming the linear
regression model (4.4) whose solution is now achieved by minimizing

Rrr(w) =
1

n

n
∑

i=1

(yi − f(xi,w))2 + ξ‖w‖2, (4.20)

where f(x,w) = wTΦ(x) and ξ is a regularization term. The least-squares estimate of w is

ŵ = (ΦTΦ+ ξI)−1ΦTy

which is biased but has lower variance compared to an OLS estimate. To make the connection
to the Kernel PCR case we express the estimate ŵ in the eigensystem {λ̃i,ui}Mi=1

ŵ =
M
∑

i=1

(λ̃i + ξ)−1ui(ui)TΦTy

and corresponding variance-covariance matrix as [60]

cov(ŵ) = σ2
M
∑

i=1

λ̃i(λ̃i + ξ)−2ui(ui)T .

We can see, that in contrast to Kernel PCR (4.8), the variance reduction in Kernel RR is
achieved by giving less weight to small eigenvalue principal components via the factor ξ.

In practice we usually do not know the explicit mapping Φ(.) or its computation in the
high-dimensional feature space F may be numerically intractable. In [116], using the dual
representation of the linear RR model, the authors derived a formula for estimation of the
weights w for the linear RR model in a feature space F ; i.e. (non-linear) Kernel RR. Again,
using the fact that K(x,y) = Φ(x)TΦ(y) we can express the final Kernel RR estimate of
(4.20) in the dot product form [116, 16]

f(x) = cTk = yT (K+ nξI)−1k, (4.21)

where K is again an (n × n) Gram matrix and k is the vector of dot products of a new
mapped input example Φ(x) and the vectors of the training set; ki = (Φ(xi).Φ(x)). It is
worth noting that the same solution to the RR problem in the feature space F can also be
derived based on the dual representation of the Regularization Networks minimizing the cost
function (2.21) using the quadratic loss function V (yi, f(xi)) = (yi − f(xi))2 [34, 35, 45] or
through the techniques derived from Gaussian processes [163, 16].

We can see that including a possible bias term into the model leads to its penalization
through the ξ term. However, in the case of regression or classification tasks there is no
reason to penalize the shift of f by a constant. It was pointed out in [23], that in the case of
a radial kernel we can overcome this by using a new kernel of the form

K̃(x,y) = K(x,y)− ξ0
The ξ0 is chosen to construct a new RKHS consisting only of zero-mean functions; i.e. K̃
without the zeroth order Fourier component (see Appendix A.4). Effectively, the new kernel
K̃ induces the null space of the constant functions which are not included in a new RKHS
norm and based on the cost function (2.21) are not penalized7. Now, the solution (2.23) will

7 In fact, we do not need to constrain ourselves to the construction of a RKHS with only constant functions
not included in the norm. Similar to SVR, we can consider a new extra constant term not included in the
norm ‖f‖H and thus ‘balance’ the penalization of the potential constant feature of a initial kernel K by this
new, not penalized, term.
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take the form [34, 35, 156, 23]

f(x) =
n
∑

i=1

ciK̃(x,xi) + b̃ =
n
∑

i=1

ci(K(x,xi)− ξ0) + b̃ =
n
∑

i=1

ciK(x,xi) + b (4.22)

and the unknown coefficients {ci}ni=1, b = b̃−∑n
i=1 ciξ0 can be found by solving the following

system of linear equations [34, 23]

(K̃+ nξI)c+ 1b̃ = (K+ nξI)c+ 1b = y

n
∑

i=1

ci = 0 (4.23)

Thus we still can use a positive definite kernel K as the only change is to estimate new b
term. Let us note that in the case of using a quadratic loss function in the SVR model
described in section 4.5, the general quadratic optimization problem for finding the estimate
of the weights is transformed to the solution of the linear equations (4.23) [132]. In fact, in
such a case the same linear regression models in a feature space are assumed.

Another technique in removing a ‘bias’ term problem is to ‘centralize’ the regression
problem in feature space; i.e. assume the sample mean of the mapped data Φ(xi) and targets
y to be zero. This will lead to the regression estimate f(x,w) = wTΦ(x) without the bias
term. The centralization of the individual mapped data points Φ(x) can be achieved by the
same ‘centralization’ of the Gram matrix K and vector k given by equation (3.4) and (3.14),
respectively.

4.5 Support Vector Regression

As we noted at the beginning of the chapter, SVR is a technique where the solution to (4.4)
is found by the minimization of the following regularized risk functional

1

n

n
∑

i=1

V (yi, f(xi;w, b)) + ξ‖w‖2, (4.24)

where we assume the estimate of the desired regression function has the form f(x;w, b) =
wTΦ(x) + b with an extra, not penalized bias term considered. In contrast to Kernel RR
cost functions somewhat different from quadratic are usually employed [128]. In practice, a
frequently used cost function is Vapnik’s ε-insensitive cost function (2.7) and SVR notation
is usually associated with this type of regression (in the following we implicitly assume this
type of SVR).

Vapnik in [153] has also shown that the regression estimate that minimizes the risk func-
tional (4.24) with the ε-insensitive cost function is of the form

f(x) =
n
∑

i=1

(γ∗i − γi)K(xi,x) + b, (4.25)

where {γi, γ∗i }ni=1 are Lagrange multipliers given by the maximization of the quadratic form

max
γi,γ∗i

[−ε
n
∑

i=1

(γi + γ∗i ) +
n
∑

i=1

(γi − γ∗i )yi −
1

2

n
∑

i,j=1

(γi − γ∗i )K(xi,xj)(γj − γ∗j )]

subject to
∑n

i=1(γ
∗
i − γi) = 0

0 ≤ γi, γ∗i ≤ 1
2nξ (4.26)

To solve this optimization problem a primal-dual interior point method [150] is usually em-
ployed. As a consequence of using the ε-insensitive cost function only some of the coefficients
pairs {γ∗i , γi}ni=1 will become non-zero; i.e. (γ∗i − γi) 6= 0. Effectively it leads to a sparse
solution in (4.25). The data points associated with the coefficients where (γ∗i − γi) 6= 0 are
called support vectors.
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4.5.1 Multi-Layer SVR

Combining the Kernel PCA preprocessing step with SVR yields a multi-layer SVR (MLSVR)
in the following form [120]

f(x) =
n
∑

i=1

(γi − γ∗i )K1(β(xi),β(x)) + b,

where components of vectors β are defined by (3.11). However, in practice the choice of
appropriate kernel function K1 can be difficult. In this study, a linear kernel K1(x,y) = (x.y)
is employed. We are thus performing a linear SVR on the p-dimensional sub-space of F
spanned by the selected nonlinear principal components.

It was shown in [121] that using the multi-layer support vector machines (SVM) approach
on classification problems provides results comparable with direct nonlinear SVM approaches.
However, when the linear kernel K1 is used it speeds up the overall computations. This is
generally not true in the case of MLSVR. However, similar to Kernel PCR and Kernel PLS
the usefulness of the approach is rather based on the possibility of using the real LV structure
of the regressors in feature space and/or their de-noising if the regressors are contaminated
by a certain level of noise. We discuss this issue in the next section.

4.6 De-noising in a feature space

White additive noise will change the covariance matrix of the investigated signal by adding
a diagonal matrix to it, with corresponding variances of individual noise components on the
diagonal. In the case of isotropic noise this will lead to the same increase in all eigenvalues
computed from the clean signal. If the signal to noise ratio is sufficiently high we can assume
that the noise will mainly affect the directions of the principal components corresponding
to smaller eigenvalues. This allows us to discard the finite variance due to the noise by
projection of the data onto the principal components corresponding to higher eigenvalues.
However, a nonlinear transformation of the measured signal consisting of a signal and additive
noise can smear the noise into certain directions. Moreover, the nonlinear transformation
into a feature space will also ‘destroy’ essential additivity and uncorrelatedness of the noise.
Thus, discarding the finite variance due to the noise can lead to a higher loss of the signal
information; i.e. we have to deal with the balance between noise reduction and information
loss. We have investigated this situation in the case of the noisy Mackey-Glass time series
(see chapter 5) and the nonlinearity Φ(.) induced by using the Gaussian kernel. From Figure
4.1 we can see that the noise increases the variance in the directions with smaller eigenvalues
but decreases the variance in the main signal components. We can infer from this that a
more uniform smearing of the investigated signal into all directions was induced. Cutting the
directions with the smaller eigenvalues will provide a level of noise reduction, however loss of
information in the main signal direction will also appear.

In spite of the above possible disadvantages, in [77, 119] promising results in digit de-
noising were demonstrated using Kernel PCA. In fact, the advantage of using (nonlinear)
Kernel PCA over its linear variant is the possibility of extracting up to (n − 1) principal
components able to extract interesting nonlinear structures in data. If the information about
the data structure in N dimensional input space is spread into all dimensions we cannot
reduce the data structure by linear PCA without a significant loss of information. On the
other hand, the extraction of up to (n−1) > N nonlinear principal components may provide a
higher chance to reduce the noisy components in the data while maintaining the information
about structure in the data.

We have shown that all regression techniques presented in this chapter shrink the OLS
solution from the directions of low data spread; i.e. from eigendirections corresponding
to small eigenvalues. We may hypothesize that in situations where these eigendirections
represent mainly the noisy part of the signal, the LV projection methods – Kernel PCR,
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Fig. 4.1: Eigenvalues computed from embedded Mackey-Glass time series transformed to kernel
space. Different levels of the noise were added (n/s represents the ratio between standard
deviation of the noise and signal, respectively); n/s=0% (blue line), n/s=11% (red line),
n/s=22% (green line).

Kernel PLS and MLSVR – can be profitable due to the data not being projected onto these
eigendirections.

4.7 Model Selection

To determine unknown parameters in all regression models, cross validation (CV) techniques
were used [130]. While in Kernel RR, a regularization term and parameters of the kernel
function have to be estimated, in Kernel PLS and Kernel PCR it is mainly the problem of
appropriate selection of (principal) components. The case of SVR is similar to Kernel RR but
extended to the problem of setting the ε parameter in the Vapnik’s ε-insensitive cost function
(2.7). In the same way as Kernel PCR, MLSVR further requires the appropriate selection of
principal components.

For a comparison of models using particular values of estimated parameters, the prediction
error sum of squares (PRESS) statistic was used.

PRESS =
n
∑

i=1

(yi − f(xi))2,

where f(xi) represents the prediction of the measured response yi. PRESS was summed over
all CV subsets.

4.7.1 Kernel PLS

In Kernel PLS the number of components gradually increases until the model reaches its
optimal dimension. We can use CV to determine the adequacy of the individual components
to enter the final model [169] or to use CV for the comparison of whole models of certain
dimensionality 1, 2, . . . , p. In our study we used the second approach and the validity of
individual models was compared in terms of PRESS.

4.7.2 Kernel PCR and MLSVR

The situation is rather more difficult in the case of Kernel PCR due to the fact that principal
components are extracted solely based on the description of the input space without using
any existing correlations with the outputs. The influence of individual principal components
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Fig. 4.2: Example of the estimated ordered eigenvalues (left) and t2 statistic (right) of the regressors
created by the projection onto corresponding principal components. Vertical (red) dashed
lines indicate a number of principal components describing 95% of the overall variance of
the data. One of the training data partitions of subject D from the regression problem
described in subsection 5.1.2 was used.

regressors can be consequently measured by the t-test for regression coefficients [80]. By
assuming a centralized regression model (4.6) for which the design matrix B satisfies BTB =
I, we can write for the t2 statistic of k-th regressor t2k ≡ (βT

kY)2 where βk represents the
(n × 1) vector of the projections of input data onto the k-th principal component. The
condition BTB = I simply means sphering of the projected data which can be achieved on
training data by taking P = Ũ in equation (3.12).

There are several different situations which can occur in PCR. First, the principal direc-
tions with large eigenvalues and significant values of t2 should always be used in the final
model. The principal directions with high eigenvalues and insignificant values of t2 should
also be included in the final model due to the fact that a significant amount of variability of
the input data can be lost. The principal directions with low eigenvalues and insignificant
values of t2 should always be deleted. The most difficult problems arise when some of the
directions with small eigenvalues have a significant contribution to prediction. This situation
on the data sets used was already demonstrated in [111, 110]. Moreover, in Figure 4.2 we also
give one of the examples we observed on the used data sets. Comparing the left and right
graphs we can see that some of the small eigenvalues principal components may have relatively
high prediction properties. In contrast we can see that t2 values of some higher eigenvalues
principal components indicate their low contribution to the overall prediction abilities of the
regression model. For further discussion on the principal components selection topic we refer
the reader to [60, 131].

First, we would like to stress that as a consequence of the orthogonality of regressors the
individual single variable models have an independent contribution to the overall regression
model. This significantly simplifies the selection of individual regressors and in our study we
decided on the following model selection strategy. We were iteratively increasing the number
of large eigenvalue principal components entering the model without considering their values
of t2 statistics. The criterion employed was the amount of explained variance. The rest of the
principal components were ordered based on the t2 statistics. Similar to Kernel PLS, CV was
used to compare the whole models of particular dimension. However, in contrast to Kernel
PLS the PRESS statistics were used to select the final model over all possible arrangements
of the final models; i.e. for a different, fixed number of principal components with large
eigenvalues entering the final model.

In the case of MLSVR the selection of principal components was entirely based on a
criterion reflecting the described variance of selected principal components.



5. EXPERIMENTS

5.1 Data Sample Construction

The performance of the kernel-based regression techniques described in the previous chapter
were compared using two data sets. Selection of the first artificially generated Mackey-Glass
time series was motivated by the fact that the differential equation describing this chaotic
system was designed to model the control of white blood-cell production [72] and belongs
to the category of simulated physiological data sets. The second data set reflects an actual
problem of estimating the signal detection performance of humans from measured Event
Related Potentials (ERPs).

5.1.1 Chaotic Mackey-Glass Time-Series

The chaotic Mackey-Glass time-series is defined by the differential equation

ds(t)

dt
= −bs(t) + a

s(t− τ)
1 + s(t− τ)10

with a = 0.2, b = 0.1. The data were generated with τ = 17 and using a second-order
Runge-Kutta method with a step size 0.1. Training data is from t=200 to t=3200 while test
data is in the range t= 5000 to 5500. To this generated time-series we added white noise
with normal distribution and with different levels corresponding to ratios of the standard
deviation of the noise and the clean Mackey-Glass time-series.

5.1.2 Human Signal Detection Performance Monitoring

We have used Event Related Potentials and performance data from an earlier study [145, 146,
66]. Eight male Navy technicians experienced in the operation of display systems performed
a signal detection task. Each technician was trained to a stable level of performance and
tested in multiple blocks of 50–72 trials each on two separate days. Blocks were separated
by 1-minute rest intervals. A set of 1000 trials were performed by each subject. Inter-
trial intervals were of random duration with a mean of 3s and a range of 2.5–3.5s. The entire
experiment was computer-controlled and performed with a 19-inch color CRT display (Figure
5.1). Triangular symbols subtending 42 minutes of arc and of three different luminance
contrasts (0.17, 0.43 or 0.53) were presented parafoveally at a constant eccentricity of 2
degrees visual angle. One symbol was designated as the target, the other as the non-target.
On some blocks, targets contained a central dot whereas the non-targets did not. However, the
association of symbols to targets was alternated between blocks to prevent the development
of automatic processing. A single symbol was presented per trial, at a randomly selected
position on a 2-degree annulus. Fixation was monitored with an infrared eye tracking device.
Subjects were required to classify the symbols as targets or non-targets using button presses
and then to indicate their subjective confidence on a 3-point scale using a 3-button mouse.
Performance was measured as a linear composite of speed, accuracy, and confidence. A single
measure, PF1, was derived using factor analysis of the performance data for all subjects, and
validated within subjects. The computational formula for PF1 was

PF1 = 0.33∗Accuracy + 0.53∗Confidence - 0.51∗Reaction Time
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Fig. 5.1: Display, input device configuration and symbols for task-relevant stimuli for the signal
detection task.

using standard scores for accuracy, confidence, and reaction time based on the mean and
variance of their distributions across all subjects. PF1 varied continuously, being high for fast,
accurate, and confident responses and low for slow, inaccurate, and unconfident responses.
In our experiments we linearly normalized PF1 to have a range of 0 to 1.

ERPs were recorded from midline frontal, central, and parietal electrodes (Fz, Cz, and Pz),
referred to average mastoids, filtered digitally to a bandpass of 0.1 to 25Hz, and decimated
to a final sampling rate of 50Hz. The prestimulus baseline (200 ms) was adjusted to zero to
remove any DC offset. Vertical and horizontal electrooculograms (EOG) were also recorded.
Epochs containing artifacts were rejected and EOG-contaminated epochs were corrected.
Furthermore, any trial in which no detection response or confidence rating was made by a
subject was excluded along with the corresponding ERP.

Within each block of trials, a running-mean ERP was computed for each trial (Figure
5.2). Each running-mean ERP was the average of the ERPs over a window that included the
current trial plus the 9 preceding trials for a maximum of 10 trials per average. Within this
10-trial window, a minimum of 7 artifact-free ERPs were required to compute the running-
mean ERP. If fewer than 7 were available, the running mean for that trial was excluded.
Thus each running mean was based on at least 7 but no more than 10 artifact-free ERPs.
This 10-trial window corresponds to about 30s of task time. The PF1 scores for each trial
were also averaged using the same running-mean window applied to the ERPs, excluding
PF1 scores for trials in which ERPs were rejected. Prior to analysis, the running-mean ERPs
were clipped to extend from time zero (stimulus onset time) to 1500 ms post-stimulus, for a
total of 75 time points.

5.2 Results

The present work was carried out with Gaussian kernels; K(x,y) = e−(‖x−y‖2/d), where d
determines the width of the Gaussian function. The Gaussian kernel possesses good smooth-
ness properties (suppression of the higher frequency components) and in the case where we do
not have a priori knowledge about the regression problem we would prefer a smooth estimate
[34, 129].
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Fig. 5.2: Running-mean ERPs at sites Fz, Cz and Pz for subject B in the first 50 running-mean
ERPs.

5.2.1 Chaotic Mackey-Glass Time-Series

The kernel-based regression models with quadratic cost function, i.e. Kernel PCR, Kernel
PLS and Kernel RR, were trained to predict the value sampled 85 steps ahead from inputs at
time t, t−6, t−12, t−18. The training data partitions were constructed by moving a ‘sliding
window’ over the 3000 training samples in steps of 250 samples. This window had a size of
500 samples and 1000 samples, respectively. The validation set was then created by using
the following 250 and 500 data points. This created ten partitions of size 500/250 (train-
ing/validation) samples and seven partitions of size 1000/500 (training/validation) samples.

We estimated the variance of the overall clean training set and based on this estimate
σ̂2

.
= 0.05 the CV technique was used to find the optimal width d from the range 〈0.01, 0.2〉

using the step size 0.01. A fixed test set of size 500 data points (see subsection 5.1.1) was used
in all experiments. The performance of the regression models to predict ‘clean’ Mackey-Glass
time series was evaluated in terms of normalized root mean squared error (NRMSE) defined
as

NRMSE =

√

∑n
i=1(yi − ŷi)2

∑n
i=1(yi − ȳ)2

ȳ =
1

n

n
∑

i=1

yi ,

where ŷ represents an estimation of the signal of interest on noisy time-series and y the ‘clean’
(noise free) Mackey-Glass time-series, respectively.

The results achieved using the individual regression models are summarized in Table 5.1.
In terms of NRMSE we may observe approximately the same performance of all the methods
employed. However, comparing Kernel PLS and Kernel PCR we can observe a significant
reduction in the number of the components used in the case of Kernel PLS regression. In
some cases Kernel PLS utilizes less than 10% of the components utilized by Kernel PCR.

Increasing the value of d leads to a faster decay of the eigenvalues (see e.g. [166]) and
to the potential loss of the ‘finer’ data structure due to a smaller number of the nonlinear
principal components describing the same percentage of all the data variance. Increasing
levels of the noise has the tendency to increase the optimal value for the d parameter which
coincides with the intuitive assumption about smearing out the local structure. In contrast
small values of d will lead to ‘memorizing’ of the training data structure. Thus, in Figures
5.3 and 5.4 we also compared the results on the noisy time series and their dependence on
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Method n/s=0.0% n/s=11% n/s=22%
500 1000 500 1000 500 1000

Kernel PLS 0.048 0.007 0.322 0.279 0.455 0.414
(0.031) (0.002) (0.030) (0.004) (0.021) (0.010)

# of C 155 192 7 8 6 6
(38) (57) (2) (1) (2) (2)

Kernel PCR 0.046 0.009 0.327 0.284 0.462 0.423
(0.030) (0.004) (0.030) (0.004) (0.031) (0.011)

# of PC 383 593 79 119 48 87
(78) (188) (35) (49) (24) (59)

Kernel RR 0.044 0.007 0.321 0.276 0.451 0.412
(0.027) (0.002) (0.041) (0.005) (0.029) (0.008)

Tab. 5.1: The comparison of the approximation errors (NRMSE) of prediction, the number of used
components (C) and principal components (PC) for 2 different sizes of Mackey-Glass
training set. The values represent an average of 10 simulations in the case of 500 training
points and 7 simulations in the case of 1000 training points, respectively. Corresponding
standard deviation is presented in parentheses. n/s represents the ratio between the
standard deviation of the added Gaussian noise and the underlying time-series.

the width d of the Gaussian kernel for the case when training sets were of size 500 data
points. We may observe a smaller range of the d values on which Kernel PLS and Kernel
PCR achieves the optimal results on the testing set compared to Kernel RR. However, the
results also suggest a smaller variance in the case of latent variable projection methods; i.e.
Kernel PLS and Kernel PCR.

5.2.2 Human Signal Detection Performance Monitoring

To be consistent with the previous results reported in [145, 66] the validity of the models was
measured in terms of normalized mean squared error (NMSE) and in terms of the proportion
of data for which PF1 was correctly predicted with 10% tolerance (test proportion correct
(TPC)); i.e ±0.1 in our case.

In our pilot study [110] the performance of SVR and Kernel RR methods trained on data
preprocessed by linear PCA in the input space was compared with the results achieved by
using MLSVR and Kernel PCR on features extracted by Kernel PCA. We trained the models
on 50% of the ERPs and tested on the remaining data1. The described results, for each
setting of the parameters, are an average of 10 runs each on a different partition of training
and testing data. In the case of Kernel RR the regularization term ξ was estimated by cross-
validation using 20% of the training data set as a validation set. We used ε = 0.01 and ξ = 0.01
parameter values for SVR and MLSVR models. The criterion for the selection of principal
components was the amount of variance described by the selected principal components. To
summarize these results in Figures 5.5 and 5.6 the results achieved on subject C(417 ERPs),
D(702 ERPs), F(614 ERPs) are depicted. From the figures we can see consistently better
results on features extracted by Kernel PCA on subjects D and F. These superior results
achieved using the Kernel PCA representation were also observed on the remaining 5 subjects.

1 In contrast to [146, 145] where one training (odd-numbered blocks of trials)-testing (even-numbered blocks
of trials) data pair was used, in our studies we created different training-testing data partitions by random
sampling from all blocks of trials. As the within-block correlations are much higher than between blocks this
leads to a significant improvement in the results [110]. However, this selection of training-testing partitions is
irrelevant for the comparison of the kernel-based regression techniques investigated.
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Fig. 5.3: Comparison of the results achieved on the noisy Mackey-Glass (n/s=11%) time series with
the Kernel PLS(red), Kernel PCR (blue) and Kernel RR (green) methods. Ten different
training sets of size 500 data points were used. The performance for different widths (d) of
the Gaussian kernel is compared in normalized root mean squared error (NRMSE) terms.
The error bars represent the standard deviation on results computed from ten different
runs. n/s represents the ratio between the standard deviation of the added Gaussian noise
and the underlying time-series.
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Fig. 5.4: Comparison of the results achieved on the noisy Mackey-Glass (n/s=22%) time series with
the Kernel PLS(red), Kernel PCR (blue) and Kernel RR (green) methods. Ten different
training sets of size 500 data points were used. The performance for different widths (d) of
the Gaussian kernel is compared in normalized root mean squared error (NRMSE) terms.
The error bars represent the standard deviation on results computed from ten different
runs. n/s represents the ratio between the standard deviation of the added Gaussian noise
and the underlying time-series.
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Fig. 5.5: Comparison of the results achieved on subjects C, D and F with MLSVR and SVR on
data preprocessed by linear PCA (LPCA + SVR), respectively. In both cases the principal
components describing 99% of variance were used. The performance for the different
widths (d) of the Gaussian kernel is compared in terms of test proportion correct (TPC)
and normalized mean squared error (NMSE).
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Fig. 5.6: Comparison of the results achieved on subjects C, D and F with Kernel PCR (KPCR)
and Kernel RR (KRR) on data preprocessed by linear PCA (LPCA + KRR), respectively.
In both cases the principal components describing 99% of variance were used. The per-
formance for the different widths (d) of the Gaussian kernel is compared in terms of test
proportion correct (TPC) and normalized mean squared error (NMSE).
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Fig. 5.7: Boxplots with lines at the lower quartile, median, and upper quartile values and whisker
plot for subjects A to H. The performance of Kernel RR with linear PCA preprocessing
step (left-hand (blue) boxplots) is compared with Kernel PCR on data preprocessed by
Kernel PCA (right-hand (green) boxplots) in terms of normalized mean squared error
(NMSE). The boxplots are computed on results from 10 different runs using the widths of
the Gaussian kernel on which the methods achieved minimal NMSE on test set.

However, on subject C the performance with the features selected by linear PCA was slightly
better. In the next step, for individual subjects, we selected the results for a Gaussian kernel
width d on which Kernel RR (with linear PCA preprocessed data) and Kernel PCR (with
Kernel PCA preprocessing) achieved the minimal NMSE on the test set. In Figure 5.7 a
boxplot with lines at the lower quartile, median, and upper quartile values and a whisker
plot for individual subjects is depicted. The boxplots indicate the differences between the
results on subjects D to H. Using the sign test and the Wilcoxon matched-pairs signed-ranks
test we tested the hypotheses about the direction and size of the differences within pairs.
On subjects D to H the p-values < 0.03 indicate that the difference between the results
achieved using linear PCA and Kernel PCA preprocessing steps is statistically significant.
The alternative hypothesis regarding the superiority of linear PCA leads to p-values < 0.02.
Although both tests on subjects A, B and C did not show a statistically significant difference
between the results (p-values between 0.11 and 0.75), the alternative Wilcoxon test about
the superiority of linear PCA leads to a higher p-value only on subject C (A - 0.12, B - 0.25,
C - 0.88). Note that on subject C the smallest number of ERPs is available (417). Figure
5.7 also indicates the weakest results with the highest variance over individual runs. This
result suggests that the number of ERPs from the subject C were insufficient to model the
desired dependencies between ERPs and the subject performance. Moreover, in this case the
dimension of matrix K in the feature space F is lower (209) than the input dimensionality
(225) and so we cannot exploit the advantage of Kernel PCA to improve overall performance
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Method NMSE TPC

Kernel PCR (with EMKPCA) 0.154 83.3

Kernel RR 0.155 83.5

SVR (with SVMTorch) 0.161 82.8

Tab. 5.2: The comparison of the NMSE and TPC prediction errors on the test set for the model
based on all subjects ERPs. The values represent an average of 3 different simulations.

by using more components in the feature space than the number available in the input space.
In [110], comparing SVR with MLSVR, we have also demonstrated that without the

Kernel PCA preprocessing step in the feature space F we did not increase the overall perfor-
mance. On the contrary, on subjects A, B and H the performance using the MLSVR method
was slightly superior. On the remaining subjects the difference was insignificant. Note that
these results were based on fixing the ε = 0.01 and ξ = 0.01 values to be the same in both
SVR and MLSVR approaches. Further we selected 90% of all nonlinear principal components
in the case of MLSVR. Thus, the better results achieved with MLSVR provide us with only
an indication about the usefulness of MLSVR rather than a conclusive answer.

Further, in [111, 110], we have also reported the results when Kernel PCR, Kernel RR
and SVR were used on all eight subjects. We split the overall data set (5594 ERPs) into three
different training (2765 ERPs) and testing (2829 ERPs) data pairs. 20% of the training data
set was used for cross-validation to estimate ε, ξ and ξ parameters in SVR and Kernel RR,
respectively. In the case of SVR the direct solution of the quadratic optimization problem to
find the γ, γ∗ and b coefficients (4.25) was replaced by using the SVMTorch [14] algorithm
designed to deal with large-scale regression problems. In the case of Kernel PCR, the eigen-
vectors and eigenvalues were estimated using the EM approach to Kernel PCA (EMKPCA)
with 30 EM steps. Based on the results reported in [111], we provide the results when 2600
main nonlinear principal components and a Gaussian kernel of width d = 6000 were used.
Table 5.2 summarizes the performance of the individual methods. We can see the slightly
superior performance achieved with the Kernel PCR and Kernel RR models in comparison
to SVR.

In the last part of the section we are comparing Kernel PCR, Kernel PLS, Kernel RR
and SVR techniques using more extensive, CV based, search for the optimal parameters. For
each individual subject we split the data into 10 different 55% and 45% training and testing
partitions. Eleven-fold CV to estimate the desired parameters was applied on each training
partition. After CV a final model was tested on an independent testing partition. This was
repeated 10 times for each training and testing data pair. The results achieved on individual
subjects in our former studies [108, 110, 111] informed our choice of the Gaussian kernel. In
the case of SVR the SVMTorch [14] algorithm was used.

Tables 5.3 and 5.4 summarize the results achieved on eight subjects (A to H). In terms
of NMSE and TPC we may see approximately the same performance of all kernel regression
models. The number of components used in the case of Kernel PLS is on average 10 times
lower compared to Kernel PCR, however only on subject F a slightly superior performance
of Kernel PLS in terms of NMSE was observed. Further we can see that in the case of SVR
we did not achieve significant sparsification of the solution and usually more than 90% of the
training data points (support vectors) were used in the final model.
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Subject Kernel PLS Kernel PCR Kernel RR SVR

NMSE # of C NMSE # of PC NMSE NMSE # of SV

A 0.159 27.9 0.159 373.1 0.159 0.159 421.7
(891 ERPs) (0.025) (16.3) (0.023) (30.9) (0.025) (0.025) (8.9)

B 0.117 33.9 0.118 224.4 0.117 0.117 285.1
(592 ERPs) (0.027) (12.3) (0.026) (32.2) (0.026) (0.026) (3.3)

C 0.259 15.5 0.260 134.8 0.253 0.258 185.9
(417 ERPs) (0.060) (4.1) (0.044) (17.9) (0.044) (0.039) (31.6)

D 0.130 24.8 0.130 241.2 0.126 0.128 337.7
(702 ERPs) (0.011) (6.0) (0.010) (50.3) (0.010) (0.010) (7.5)

E 0.058 42.4 0.059 274.4 0.057 0.057 348.2
(734 ERPs) (0.006) (20.1) (0.006) (42.2) (0.007) (0.006) (5.5)

F 0.116 24.6 0.125 186.6 0.114 0.117 290.4
(614 ERPs) (0.023) (9.9) (0.025) (61.4) (0.024) (0.025) (15.8)

G 0.105 23.6 0.107 323.3 0.105 0.105 417.4
(868 ERPs) (0.018) (13.5) (0.018) (53.2) (0.017) (0.017) (3.9)

H 0.173 19.7 0.175 280.4 0.173 0.176 359.3
(776 ERPs) (0.022) (7.0) (0.022) (49.0) (0.022) (0.020) (18.2)

Tab. 5.3: The comparison of the normalized mean squared error (NMSE) and the number of used
components (C) and principal components (PC), respectively, for subjects A to H. The
values represent an average of 10 different simulations and corresponding standard devi-
ation is presented in parentheses.

Subject Kernel PLS Kernel PCR Kernel RR SVR

TPC TPC TPC TPC

A 84.3 84.4 84.1 84.1

B 91.2 90.3 91.2 90.9

C 74.8 73.7 74.9 74.4

D 90.4 90.2 91.0 90.9

E 94.5 94.4 94.4 94.5

F 87.3 86.1 88.1 87.6

G 90.0 89.5 89.6 89.6

H 84.8 84.6 84.8 84.8

Tab. 5.4: The comparison of the results achieved on subjects A to H in terms of the test propor-
tion correct (TPC). The values represent an average of 10 different simulations. The
corresponding standard deviation was in all cases lower than 0.03.



6. SUMMING UP

Several different nonlinear, kernel-based regression methods have been studied. The SRM
principle and Regularization Theory were the main principles for their construction. A
straightforward connection between a RKHS and the corresponding feature space represen-
tation of the transformed input data allowed us to consider linear regression models in a
possibly very high dimensional feature space. The computations in a feature space were
achieved by using the ‘kernel trick’ which obviates the need to carry out explicit nonlinear
mappings.

To compare these regression techniques two data sets were employed, the chaotic Mackey-
Glass time series prediction and the data associated with the problem of estimating human
signal detection performance from the Event Related Potentials. However, in the first step
we concentrated on feature extraction by Kernel PCA with the aim of making a comparison
with linear PCA which had been used in previous studies [145, 66].

Kernel PCA for Feature Extraction and De-noising

The Kernel PCA method for feature extraction has been investigated and the selected features
were used in a regression problem. On the performance monitoring data set, in more than
half of the cases (subjects D to H), we demonstrated that the kernel regression methods with
a (nonlinear) Kernel PCA preprocessing step provide significantly superior results over those
with data preprocessed by linear PCA. Only in one case was an indication of the superiority
of linear PCA observed, however, the sufficiency of the data representation in this case is
questionable.

Moreover, we have shown that a reduction of the overall number of nonlinear principal
components can reduce the noise present in the data. Similar to the investigated Mackey-
Glass time series prediction task, this can be exploited especially in the situation where the
low-dimensional input data are spread in all directions and the noise reduction by projection
to a lower number of linear principal components leads to information loss.

The solution of the eigenvalue problem (3.3) can be numerically difficult in the case of
a high number of data samples. On the noisy Mackey-Glass time series we demonstrated
that we can make a sufficiently precise estimate of the main eigenvalues and eigenvectors
from a smaller data representation. This implies the possibility of significantly reducing the
computation and memory requirements and of practically dealing with large-scale regression
problems. In fact, in [111] we experimentally demonstrated that Kernel PCR with the prin-
cipal components extracted by the proposed EM approach to Kernel PCA provides the same
results in comparison to the case when the principal components are extracted by standard
Kernel PCA; i.e. by diagonalization of the K matrix in (3.3). Moreover, we have shown
that EMKPCA is computationally more attractive when extraction of p¿ n main principal
components is required.

On the performance monitoring data set, by employing Kernel PCR on the selected
nonlinear principal components we demonstrated comparable performance with the SVR
technique. Moreover, the reported results suggest that on this data set the regression models
with a quadratic cost function may be preferable; i.e. a Gaussian type of noise is more likely.
Thus, in the next step we concentrated on regularized kernel-based regression models with
a quadratic cost function and we extended this family of models with the nonlinear Kernel
PLS method.
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Regularized Least Squares Regression Models in RKHS

There exists a large body of literature comparing standard OLS regression with PLS, PCR
and RR (see e.g. [26, 131]). Assuming a construction of regularized linear regression models in
a RKHS we can make some conclusions by using the analogy with the reported observations.
First, in the situation when high multicollinearity among regressors exists OLS leads to an
unbiased but high variance estimate of the regression coefficients. PLS, PCR and RR are
designed to shrink the solution to the regression from the areas of low data spread resulting in
biased but lower variance estimates. Second, there exist real world regression problems where
the number of observed variablesN significantly exceeds the number of samples (observations)
n – a situation quite common in chemometrics. Moreover, we may usually also observe that
the real rank of the matrix of regressors is significantly lower than n and N . The projection of
the original regressors to the ‘real’ latent variables is the main advantage of methods such as
PLS or PCR. This is also similar to the situation when the input variables are corrupted by
a certain amount of noise (the situation with noisy Mackey-Glass time series and the ERPs
data sets). By projecting the original data to the components with higher eigenvalues we may
usually discard the noise component contained in the original data. We may hypothesize that
both situations are also quite common when a kernel-type of regression is assumed. Usually
we nonlinearly transform the original data to the high dimensional space whose dimension
M is in many cases significantly higher than the number of observations M À n.

Applying regularized regression techniques in a feature space, we observed that on both
data sets employed Kernel PLS provide the same results as Kernel PCR and Kernel RR.
However, in comparison to Kernel PCR, the Kernel PLS method utilizes a significantly smaller
number of qualitatively different components.

Future Work

In contrast to [145] where one training (odd-numbered blocks of trials)-testing (even-numbered
blocks of trials) data pair was used, in our study we created (similar to [66]) the different
training-testing data partitions by random sampling from all blocks of trials. By using the
kernel regression models on these data partitions we achieved approximately twice the level
of improvement in terms of TPC. This is a quite significant improvement on this biomedical
application. However, as the within-block correlations may be much higher than between
blocks in our future work the same data setting and representation (discrete wavelet trans-
forms of ERPs) as reported in [145] will be used to investigate the possibility of improvement
of the reported results.

Employing the CV model selection technique we observed approximately the same per-
formance on all the studied kernel regression models. It is the aim of our further study to
investigate and compare different model selection techniques. This may be more interest-
ing in the case of selection of the appropriate (principal) components entering the Kernel
PLS and Kernel PCR models. In practical situations splitting of the available data set into
training and validation sets leads not only to less accurate estimates of the components but
also has the potential to decrease their number when n¿ M . In [109] we have shown good
performance when an in-sample Covariance Inflation Criterion was used [139]. However, a
more extensive comparison between the out-sample and in-sample model selection procedures
may be fruitful here.



PART B

We start this part of the thesis by introducing the concept of depth of anaesthesia monitoring
and explaining why, despite several decades of research, this problem still remains unsolved
and is the focus for a great deal of research. We will also provide a summary of existing results,
methods and recent research on this topic. This review is not intended to be comprehensive
but covers the main areas of interest and references more detailed literature. We conclude the
first introductory section by describing the aim of our study, the motivation for the selection
of new measures, and potential contributions to the topic.

The theoretical basis, assumptions and motivations for the selection of individual measures
is highlighted at the beginning of the second chapter. The complexity measures employed in
the study are individually described. We start with the wider family of entropy rate measures.
The methodology of their derivation and final algorithms for their use in practice are provided.
Existing connections among the measures are stressed. Other complexity measures used in
the study are described in the second section of this chapter.

Following this, we describe the settings, conditions and devices required for the acquisition
of anaesthetic EEG data. Several aspects of the individual measures are then compared
by applying them to this data set. The main focus is a comparison of their abilities to
discriminate moderate and light anaesthetic states.

The results and observations are summarized in the last chapter.



7. DEPTH OF ANAESTHESIA MONITORING PROBLEM

Depth of anaesthesia (DOA) during surgery has been widely investigated in recent years, per-
haps prompted by the persistent occurrence of intraoperative cases of awareness. The Royal
College of Anaesthetists in the UK estimates around 1000 cases of inadvertent awareness
during general anaesthesia per annum. The current gold-standard measure of anaesthetic
depth is an exercise in applied pharmacology by an experienced clinician who takes into
consideration relevant aspects of the following information: patient medication, age, neu-
rological status, blood electrolyte concentrations, thyroid status, temperature, premedicant
medication, intravenous anaesthetic agent doses, inhaled anaesthetic concentration, computer
pharmacokinetic estimates of blood agent levels, end-tidal measures of inhaled agent concen-
tration, patient reactions to surgery, cardio-respiratory disease, and the methods and type of
analgesia employed. Much of this mass of information is interdependent, and the clinician is
also aware of sources of error, their recognition and magnitudes. The majority of anaesthet-
ics are conducted with depth assessed in this way, but despite progressive improvements in
these techniques, cases of awareness under general anaesthesia still occur and have profound
clinical and medico-legal consequences.

This is reliable enough for the vast majority of clinical situations but a robust, direct
monitor of anaesthetic depth invaluable to clinicians still does not exist. Most of the current
descriptors of depth of anaesthesia are agent specific, not monotonic, and show a time lag
behind clinical changes in anaesthetic depth. Several fundamentally different groups of drugs
are routinely involved in anaesthesia – usually in combination. These are benzodiazepines,
opioids, inhaled volatile agents, inhaled gases, and intravenous induction agents – which may
also be used by infusion for maintenance of anaesthesia. Each group of drugs has characteristic
effects on the EEG waveform, and there is also considerable variation within members of each
group.

7.1 DOA monitoring: Review of Methods

There is a large corpus of literature on different DOA monitoring techniques. General meth-
ods suitable for a wide range of anaesthetic drugs do exist, but either suffer from a residual
degree of interpatient variability, or lack precision. There are several methods for DOA
monitoring:

7.1.1 Clinical Signs

The main attributes in this category are changes of heart rate (HR), blood pressure (BP),
pupillary size, eye movement, temperature and some visual signs such as swallowing and
sweating. These have the disadvantage of being significantly affected by factors other than
depth of anaesthesia: patient medication, disease, surgical interventions and patient age.
Many drugs alter the variables listed above and thus decrease the reliability of the DOA
monitoring systems. On the other hand factors such as HR, BP, sweating or temperature
changes are still important for anaesthesiologists who are able to take these confounding
factors into account.
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7.1.2 Isolated Forearm Technique (IFT)

The IFT method was introduced by Tunstall [147] to investigate conscious awareness during
obstetric anaesthesia. This technique was designed to overcome the problem of measurement
of cognitive functions in the cases of anaesthetized patients who also underwent neuromuscu-
lar blockade. A blood pressure cuff isolates an arm from the neuromuscular blocking drugs,
and the anaesthesiologist can talk with a patient during surgery, the patient being able to
respond using the unparalyzed arm. It is now accepted that this technique is a more useful
indicator of consciousness than clinical signs. It is the only technique which permits eval-
uation of cognitive function during surgery where the anaesthetic regimen includes muscle
relaxants [137].

7.1.3 EEG Monitoring

The EEG is a microvolt-level electrical signal read from the scalp. It is derived mainly from
cerebral cortical post-synaptic potentials. Cellular activity and synchrony determine the
magnitude and frequency of the signal. The raw EEG is difficult to interpret and various
transforms and processed displays have been developed to aid clinicians. Classical observation
has correlated behavior and frequency activity within broad bands: these cover 0.5Hz to 50Hz
and have been labeled delta, theta, alpha, beta and beta 2 (in ascending frequency order).

The EEG can be considered to consist of an underlying background process (assumed sta-
tionary and ergodic on several segments lasting several seconds) with superimposed transient
nonstationarities (e.g. eye-blinks, patient movement or electrode movement) and superim-
posed ‘unwanted’ continuous signals like electrocardiogram (ECG), electromyogram (EMG)
or an AC power signal. Features include synchrony, spikes (sharp epileptiform waves) and
burst suppression (brief periods of very low amplitude). Higher processes (conscious thought)
are characterized by desynchronisation.

Anaesthesia typically – but not always – causes synchronisation and slowing (shift to
lower frequencies) of the EEG. Deep anaesthesia is characterized by burst suppression and
ultimately electrical silence.

Frequency Domain

The possibility of using the EEG for measuring DOA has been extensively explored during
the last two decades. This was made feasible by the introduction of computer-based signal
processing methods. Part of the difficulty in evaluating the raw EEG was addressed by using
different representations especially in the frequency domain. The Fast Fourier Transform
(FFT) is a method which transforms data from the time-domain into the frequency-domain.
Display methods such as the Compressed Spectral Array (CSA) [58, 7, 6] and Density Spectral
Array (DSA) [58, 25] are suitable for clinicians wishing to monitor the amplitude spectra
obtained by FFT. Despite the specificity of the changes of EEG frequency amplitudes to
anaesthetic agents [58]1,[102] and the clinical state of the patients [21], visualizing the EEG
signal in a compressed form by CSA or DSA plots gives the anaesthetist the opportunity to
complement traditional clinical signs with on-line EEG signal monitoring [135, 7, 6].

Indices derived from EEG spectral frequency changes are the spectral edge frequency
(SEF), median frequency (MF), total power spectra and frequency band power ratio. These
have been extensively investigated for DOA monitoring [20, 30, 68, 123, 144, 29]. In general,
these measures seem to be less capable of measuring DOA due to their sensitivity to the
anaesthetic drugs used and the variability of the results between different researchers [30]. A
disadvantage of MF and SEF is hysteresis – the measure lagging behind changes of measured
anaesthetic concentration.

1 The effects on the EEG of some of the agents are summarized in this publication.
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The spectral representation by autoregressive model coefficients (AR) was investigated in
[124, 136]. Although the AR representation can lead to a better estimation of the spectral
properties of the EEG we may conjecture that this method is unlikely to avoid the problems
encountered by conventional spectral analysis following FFT.

Bispectral Index

If we accept the theory that the EEG is generated by nonlinear processes, the above mentioned
spectral measures then have to fail to fully describe the EEG, because in the conventional
power spectral EEG analysis, the phase information, which describe nonlinear connections
between the elementary process of the EEG, is suppressed. Bispectral analysis (BA) [9, 53]
used for EEG analysis tries to overcome the problem as BA investigates the phase relations
between the fundamental frequencies – bicoherence2.
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Fig. 7.1: The bispectrum computed for the signal linearly mixed from sines waves with frequen-
cies ω1, ω2 and ω3 = ω1 + ω2. The phases φ1 and φ2 were randomly generated and the
phase for third harmonic was set φ1+φ2. The peak indicates high magnitude of bispectrum
Bs(ω1, ω2) = |f(ω1)f(ω2)f(ω1+ω2)| and reflects a strong frequency and phase relation be-
tween ω1 and ω2 and modulation frequency ω1+ω1. f(.) represents complex spectral values
given by the FFT of the original signal. Bicoherence between two fundamental frequencies
ω1 and ω2 is then defined as Bc(ω1, ω2) = Bs(ω1, ω2)/

√

|f(ω1)|2|f(ω1)|2|f(ω1 + ω2)|2.

Combining burst suppression ratio, relative alpha/beta ratio and bicoherence between in-
dividual frequencies the bispectral index (BIS) was introduced as a measure of DOA based on
a multivariate regression on a huge database of patients [63, 70]. BIS appeared to generalize
well across a number of general anaesthetic agents, and a significant amount of clinical re-
search in the use of BIS as a DOA measure has been carried out (see Aspect Medical Systems

2 The bicoherence is computed by normalizing the bispectrum which reflects frequency and phase coupling
between the individual fundamental frequencies making up the investigated signal – Figure 7.1
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Inc.3 for references regarding application of BIS). A comparison of the MF, SEF, BIS and
an auditory evoked potentials (AEP) index (described below) was reported in [30]. It was
concluded there, that the BIS and the AEP index distinguish the states of consciousness and
unconsciousness with a higher accuracy than MF or SEF.

Complexity Measures

Recently, in [161, 10, 11, 104] a fundamentally different measure reflecting changes of the
complexity of EEG during the different stages of anaesthesia was proposed. The complexity in
this context is generally understood to be regularity or predictability of EEG patterns. Hence
the periodic repetition of patterns in EEG provide an indication of the deterministic nature
of the system generating the signal. Such systems are considered to have lower complexity
compared to systems generating fully random signals which are understood to be highly
complex. We discuss the concept of complexity in more detail in the next chapter and for the
moment we only provide references to several recently reported results using this approach
for DOA monitoring problem.

Nonlinear complexity measures – Approximate Entropy (section 8.1.1) and Nonlinear Cor-
relation Index (section 8.2.1) – were used in [161, 10, 11]. Results reported in [10] provided
an indication of the potential use of Approximate Entropy in the case of a single drug (des-
flurane) anaesthesia. In the case of classification of EEG patterns of burst suppression under
single drug anaesthesia (sevoflurane or desflurane anaesthesia) the use of these complexity
measures resulted in superior performance compared to BIS and frequency based measures
[161, 11].

7.1.4 Evoked Potentials Monitoring

Evoked potentials are the responses of the central nervous system to specific stimuli in the
form of electrical signals. Three types of stimuli were investigated for DOA monitoring; vi-
sual evoked potentials (VEP), somatosensory evoked potentials (SEP) and auditory evoked
potentials (AEP). Averaging the EEG responses on repeating stimuli results in subtractive
suppression of the ongoing EEG and reveals the evoked response. The requirement of many
repetitions of the stimulus results in a time lag in DOA monitoring. In [41, 84], some im-
provements were proposed to overcome the problem of averaging allowing the use of evoked
potentials in a quasi on-line regime.

Auditory evoked potentials

It is clear that from a practical point of view it is mainly AEP which can be used for DOA
monitoring. In our study we did not have the opportunity to collect this type of data which
would have required further specialized equipment and resulted in potential interference in
the surgical process. However, for completeness we provide a short review of published work
in this domain. The AEP can be divided into three time stages.

Brainstem auditory evoked potential (BAEP) are EEG wave responses with a latency shorter
than 8-9ms which correspond to the brainstem response. In [137] the difference between
the changes of the BAEP during inhalational anaesthesia (increase in the latency) and
intravenous anaesthesia (little or no effect) was shown. They concluded that brain
stem waves were unsuitable for measuring DOA as the effect of intravenous agents was
insignificant.

Mid-latency auditory evoked potentials (MLAEP) are EEG responses of the primary audi-
tory cortex with latencies from 8 to 60 msec. Several studies independently suggested
that promising results in DOAmonitoring were achieved by investigations of the changes

3 http://www.aspectms.com/
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in the latencies and amplitudes of the MLAEP [138, 137, 74, 84, 30, 58]. The advan-
tage of using MLAEP changes is their relative independence to a wide range of general
anaesthetic agents, however analysis requires an intact auditory pathway and MLAEP
are therefore not universally applicable.

Late cortical AEP are responses of the frontal cortex with post-stimulus latencies greater
than 50ms. In [138, 137], it was concluded that late cortical AEPs are too sensitive
as a quantitative measure of the DOA due to the fact that they are attenuated or
abolished by general anaesthesia [51], sedation [48] and sleep [97]. On the other hand,
waves between 50 and 100ms may be usefully used to detect the transition from the
anaesthetized to the awake state.

7.2 Aim of the Study

The main focus of this study is the investigation of different types of descriptors of depth of
anaesthesia applicable to a wide range of anaesthetic drugs which are also insensitive to the
patient’s physical and psychological status. Assuming brain activity, in common with many
biological systems, is a nonlinear dynamical system with irregular and short term predictable
characteristics, only measures which reflect nonlinear characteristics would be valuable as
descriptors of the EEG.

Recent mathematical results in the theory of nonlinear dynamical systems and systems
with deterministic chaotic behavior are a potential source for the extraction of relevant dy-
namic complexity features of the signal. Thus, to extend the family of DOA descriptors we
study different measures of signal complexity applicable to EEG and we investigate the pos-
sibility that the measures reflect different stages of DOA using different anaesthetic drugs.
We have already mentioned in the previous section some very recent results published during
our study which confirmed the promising nature of this approach [161, 10, 11]. As a result of
these studies, we also assessed the described measures, comparing them with the measures
we considered most suited to assessing DOA.

We hypothesize that convenient signal complexity measures will provide features that will
form different clusters reflecting different stages of depth of anaesthesia. These features may
act as inputs for a nonlinear classifier or nonlinear regression techniques.

In the next section we describe corrected conditional entropy [99] and coarse entropy rates
[87] as new potential measures for DOA monitoring. Other complexity measures used in our
experiments are discussed.



8. COMPLEXITY MEASURES

Before we describe the individual complexity measures used, we would like to briefly introduce
the concept of complexity, as it is understood in our study, providing the motivation for using
this approach to the DOA monitoring problem.

Currently, our knowledge of the genesis of the EEG waveforms during anaesthesia is
far from complete, despite the past 20 years of research which have brought new results
into this domain. It is mainly the postsynaptical potentials (PSP) of neo-cortical neurons
which create the EEG signal as it is measured on the scalp. During the normal awake
state the EEG is created by millions of PSP asynchronously firing over the cortex. Visual
inspection of the measured EEG traces therefore shows virtually no repetitive patterns. The
EEG signal under these conditions displays no deterministic origin making it difficult to
detect and track underlying states of the brain. However, the theory of chaotical systems
introduced in the 60’s [71] gave rise to the question whether it is possible to distinguish
between fully random processes and processes with deterministic origin but showing high
levels of irregularity and usually having low levels of predictability. Early promising results
describing different EEG stages by several absolute values characterizing a low-dimensional
chaotical system generating the EEG often had to be re-examined. This was mainly due to
the effects of the relatively high noise component present in EEG, nonstationarity and other
factors violating the conditions required for the estimation of the desired descriptors of a
chaotical system. Also, hypotheses suggesting a low-dimensional origin of the EEG signal
were in many cases re-considered. In spite of these facts, many of these results, together with
the results reported when classical linear (time or frequency domain) descriptors were used,
permitted the extraction of characteristics of the EEG signal which quantitatively appeared
to distinguish between different brain states.

The situation is dramatically altered when an anaesthetic drug is administered, or during
sleep. The neuronal activity of the thalamus then produces an oscillating activity which syn-
chronizes firing of neo-cortical neurons, coinciding with a decrease in the overall excitability of
neo-cortical neurons. This leads to the EEG trace showing more regular behavior with domi-
nant frequencies significantly shifted to lower frequency activities falling into the delta band.
These changes are usually evident on simple visual inspection of the EEG. Increasing the
concentration of anaesthetic drug produces a further decrease of excitability of neo-cortical
neurons leading ultimately to the state of deep anaesthesia or coma during which neo-cortical
neurons become inactive.

This suggests that measures reflecting changes in regularity and predictability of EEG
patterns associated with the transition from awake stages to the stages of anaesthetized or
deeply anaesthetized patients may serve as valuable indicators of DOA. Thus our concept of
EEG complexity is based on the consideration that irregular, minimally predictable patterns
in the EEG are associated with a system of high complexity generating the EEG while regular,
more predictable traces of EEG are considered to be less complex. Measures associated with
this concept of complexity are discussed in the next section.

A slightly different approach is used in the case of the Nonlinear Correlation Index dis-
cussed in section (8.2.1). Although this measure is derived from the correlation dimension
of an attractor of a low dimensional chaotic system it is not understood as a measure of
proper dimension. Further, it was suggested in [61, 91, 161] that, in situations where we
cannot assume a low dimensional chaotical system generating the observed EEG signal, the
measures derived in the context of chaos may be used to discriminate the differences between
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data recorded under different experimental conditions. This suggestion must be treated with
caution. Higher values of the Nonlinear Correlation Index similar to the correlation dimen-
sion are associated with systems with a higher number of degrees of freedom and reflect more
complex awake or light anaesthesia stages of the patients.

8.1 Entropy Rates

Entropy rates are measures designed to quantify regularity of a time series or predictability
of the new samples based on previous observations. Consider a time series represented by
samples from a complex dynamic process evolving in time. The complexity of such a process
can be evaluated in terms of how quickly the system loses information about previous states.
Entropy rates will tend to zero values for processes with a periodic repetition of the same
pattern and conversely will lead to high values for processes with aperiodic or random behav-
ior. On the other hand, for a dynamical system evolving in some measurable state space the
entropy rates are related to Kolmogorov-Sinai entropy (KSE) [61]. This connection allows
one to apply entropy rates not only when a general linear or nonlinear stationary stochastic
process is assumed but also when an observed time-series is considered as a projection of a
trajectory of a dynamical system (e.g. low-dimensional chaotic system).

Consider a discrete stochastic process {Xi}, i.e. an indexed sequence of discrete ran-
dom variables characterized by the joint probability distribution function pm(x1, · · · , xm) =
Pr[(X1, . . . , Xm) = (x1, . . . , xm)], where xi ∈ X to be a realization of Xi drawn from the set
of all possible values X (alphabet). Then we have the following definition of the entropy rate
[15]

Definition: The entropy rate of a stochastic process {Xi} is defined by

lim
m→∞

H(X1, X2, . . . , Xm)

m
= h, (8.1)

where
H(X1, X2, . . .Xm) = −

∑

x1,···,xm
pm(x1, · · · , xm) ln pm(x1, · · · , xm) (8.2)

is the entropy of the random vector Xm = (X1, . . . , Xm).

The entropy rate is a quantity giving the average amount of uncertainty per one random
variable. An alternative way to express limit (8.1) follows from the fact that for stationary
random processes we also have (for the proof see [15])

lim
m→∞H(Xm/X1, . . . , Xm−1) = h, (8.3)

where the conditional entropy H(Xm/X1, · · · , Xm−1) is defined by the relation

H(Xm/X1, . . . , Xm−1) = −
∑

x1,...,xm

pm(x1, . . . , xm) ln pm(xm/x1, . . . , xm−1) (8.4)

in which

pm(xm/x1, . . . , xm−1) =
pm(x1, . . . , xm)

pm−1(x1, . . . , xm−1)
(8.5)

is the conditional probability distribution of Xm = xm given x1, . . . , xm−1. Existence of limits
(8.1) and (8.3) belongs to basic properties of a stationary process.

In practical situations we usually assume the time series {x(t), t = 1, 2, . . . , N}; i.e the
observed measurements at time points t, to be a realization of a stationary and ergodic
stochastic process {Xi}. The ergodicity condition allows us to estimate the statistics of {Xi}
from a single realization (time series); i.e we can replace ensemble averages by equal time
averages. Thus, we can assume the variables Xi to be

Xi = x(t+ (i− 1)τ),
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where τ is a time delay. But, even in such a case, in practice we can not compute exact
entropy rates from a finite number of measurements. The exact estimate of entropy rates
is restricted only to some specific cases [15]. If the observed time-series is a realization of
a zero-mean stationary Gaussian process we can estimate entropy rates through its spectral
density function f(ω). This is given by the fact that a stationary Gaussian process can be
fully described by its spectrum. In such a case the entropy rate can be expressed up to the
constant term as [54, 3, 90]

hGP =
1

2π

∫ π

−π
lnf(ω)dω. (8.6)

Now, consider a time series {x(t)} to be a finite projection of a dynamical system evolving
in some continuous measurable state space. Using the time delays technique [85, 133] we
can construct an m dimensional embedding vector xm(j) = [x(j), x(j − τ), . . . , x(j − (m −
1)τ)]T . However, now we assume each vector xm(j) to be a sample of m variables X1, . . . , Xm

determined by the dimensionality of the evolving dynamical system. We can define the joint
probability distribution pm(x1, · · · , xm) = Pr[(X1, . . . , Xm) = (x1, . . . , xm)] and consider (8.1)
as the KSE of a dynamical system [95]. This connection is given by the fact that each measure
preserving dynamical system1 corresponds to a stationary stochastic process and vice versa
[95, 89]. KSE is a topological invariant related to the sum of positive Lyapunov exponents
[94] and may be of use as an appropriate measure to characterize dynamical systems and
their states. Lyapunov exponents are quantities characterizing the strength of chaos in terms
of the rate of divergence of trajectories of a dynamical system [61]. Higher values indicate
fast exponential divergence of the close trajectories over the course of time and the loss of
predictability despite a deterministic origin of the system.

Again, a difficulty arises when exact KSE has to be estimated from a finite number of
observations usually containing a relatively high noise component. Thus, in many practical
situations alternative approximations of KSE have to be used.

In the next subsections we present three possible algorithms constructed with the aim
of approximating KSE or entropy rates where a stationary stochastic process generating the
observed data is assumed. However, rather than estimate exact values of KSE or entropy
rates the algorithms are used to measure regularity and predictability of time series with the
aim of distinguishing different states and/or determining the characteristics of the dynamical
systems or stochastic processes generating the observed data.

8.1.1 Approximate entropy

The concept of approximate entropy (ApEn) was proposed by Pincus et. al [98]. Assuming
an observed time-series of length N from which the set of m-dimensional vectors {xm(j) =
[x(j), x(j−1), . . . , x(j− (m−1))]}N−m+1

j=1 was constructed by the previously mentioned time-
delay embedding technique we can define ApEn as

ApEn = Φm(r)− Φm+1(r), (8.7)

where

Φm(r) =
1

N −m+ 1

N−m+1
∑

i=1

lnCm
i (r), (8.8)

Cm
i (r) =

∑N−m+1
j=1 θ(r − ‖xm(i) − xm(j)‖) is a correlation sum, θ stands for the Heaviside

function

θ(u) =

{

0 : u < 0
1 : u ≥ 0

1 Assume that all states of a dynamical system create a space A and define the probability space (A,B, µ)
where B is a σ-algebra of measurable subsets of A and µ is a probability measure such that µ(A) = 1. Further,
let T : A→ A be a measurable mapping (i.e. a mapping satisfying T−1B = B and ∀B ∈ B : µ(T−1B) = µ(B))
representing the evolution of the dynamical system under study. Then (A,B, µ, T ) is called the measure

preserving transformation system.
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‖.‖ represents a norm in a phase space of embedded vectors (usually the maximum norm is
utilized) and the parameter r is the diameter of the phase space partition (grain). Rather
than giving the rigorous mathematical description of ApEn let us provide a more heuristic
insight into the definition of ApEn. ApEn measures the (logarithmic) probability that m
dimensional patterns that are close to each other will also stay close when their dimension
increases. The frequency of the m dimensional patterns similar to the pattern xm(i) is
measured by the correlation sum Cm

i (r) where the parameter r defines the level of proximity
of the patterns. The decrease of Cm+1

i (r) in relation to Cm
i (r) indicates the ‘diversity’ of the

patterns compared with the pattern xm(i) when the length of the pattern is increased tom+1
and therefore leads to the increase of ApEn. It is clear, that for data generated randomly
without any regular structure ApEn will tend to higher values. In contrast, for a rigorously
periodic pattern xm(i), whose period can be ‘captured’ by the m dimensional embedding
vector, the increase of the embedding dimension to m + 1 will not decrease Cm+1

i (r) and
ApEn will tend to zero. The final ApEn value is then taken as the average over ‘regularity’
of all possible patterns x(i).

Several aspects of ApEn are now summarized. First, in the case of noise-free data there is
a clear relation between ApEn and KSE which (under some assumptions) can be estimated
from a time series as [39, 61]

hKS =
1

N −m+ 1
lim
r→0

lim
m→∞ lim

N→∞

N−m+1
∑

i=1

ln
Cm

i (r)

Cm+1
i (r)

.

The estimate of KSE in the presence of low-magnitude noise leads to incorrect results [98].
In contrast to KSE, ApEn does adapt the limit process but fixes the m, r parameters. This
has several consequences:

• ApEn may be also used in the presence of a significant noise component in the observed
data. Noise smaller than the value r is filtered out.

• ApEn is finite. This is in contrast to KSE which for stochastic processes tends to infinity.
Thus, ApEn may be also used to distinguish among different stochastic processes.

• ApEn ≥ 0 but is not necessarily zero even for periodic processes.

• ApEn is a relative measure appropriate for discriminating different states of a given
system corresponding to different parameter values.

• ApEn is translation and scaling invariant under the condition that the adequate change
of the r parameter is provided.

When ApEn is computed from N input data points we need to adjust the parameter m until
the correlation sums in (8.8) are correctly estimated. In fact, Pincus et. al. [98] had to
restrict the range of embedding dimension to m ≤ 2, 3 when approximately 1000 data points
were used. This may be disadvantageous if the periodic structure of the patterns exceeds
these values. In the next subsection we discuss corrected conditional entropy; i.e. another
complexity measure closely related to ApEn in which the problem of a possible increase in
the embedding dimension m when short data sequences are used was addressed.

8.1.2 Corrected conditional entropy

Similar to section 8.1 we define the conditional entropy as

H(Xm+1/Xm) = −
∑

x1,···,xm+1

pm+1(x1, · · · , xm+1)lnpm+1(xm+1/x1, · · · , xm),
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where pm+1(xm+1/x1, . . . , xm) is the conditional probability distribution given by (8.5) and
Xm denotes the random vector Xm = (X1, . . . , Xm). Using the chain rule [15]

H(Xm, Xm−1, . . . , X1) =
m
∑

i=1

H(Xi/X1, . . . , Xi−1)

after simple manipulation we can also write

H(Xm+1/Xm) = H(Xm+1)−H(Xm). (8.9)

In fact we can see ApEn as an approximation of conditional entropy where correlation sums
are used instead of empirical probability distribution functions. Moreover, a similar concept
of measuring the regularity of patterns when the dimension of patterns is increased by one
can be used here [99]. In the following we denote the estimate of conditional entropy using
empirical probability distributions as CEn.

The individual probability distribution functions are in practice estimated by the empirical
probability distributions, i.e. by the computation of the frequencies of individual samples. To
this end the original time-series is divided into several quantization levels (or bins) Q based
on the level of amplitude of the individual points {x(j)}Nj=1. The number of points inside
individual bins divided by the overall number of samples defines the empirical probabilities
of the points.

Problems occur when the probabilities have to be estimated from a finite (usually small)
number of observed points. With increasing dimensionality m and quantization level Q the
number of bins will increase as Qm. CEn will then tend to zero values even in those cases
where a clearly random signal (e.g. white noise) is investigated [99]. This effect will also
apply to the estimation of ApEn and as we pointed out in the previous subsection we need to
restrict ourselves to fixing the embedding dimension to lower values when a small amount of
data is available. Hence for higher values of m and Q, Porta et. al. [99] proposed a correction
term whenever CEn has to be computed from smaller numbers of observations. Corrected
conditional entropy (CCEn) is then defined as

CCEn(Xm+1/Xm) = CEn(Xm+1/Xm) + perc(Xm+1)Ĥ(X1), (8.10)

where perc(Xm+1) is the percentage of single points in the m+1 dimensional phase space (i.e.
number of m+1 dimensional bins containing one sample) and Ĥ(X1) stands for an estimate
of the Shannon entropy for m = 1. This rather heuristic correction is proposed based on
the fact that after finding 100% of single points CEn will tend to zero and we prefer to
select randomness; i.e. H(X1) representing the theoretical value of white noise with the same
probability distribution as the investigated time series. Thus we can see that (8.10) consists
of two terms, the first decreasing with m whilst the second increasing with m. Finally, CCEn
as a function of the parameter m is measured and the minimum is taken as the estimate of
the conditional entropy. For further more detailed explanation and experimental evaluation
of CCEn we refer the reader to [99].

8.1.3 Coarse-grained entropy rates

Coarse-grained entropy rates (CER) were proposed and successfully used in several applica-
tions when complexity or regularity of physiological signals were investigated [87, 92]. To
describe CER we will first introduce the term of marginal redundancies, i.e. measures quan-
tifying the average amount of information about the variable Xm+1 contained in the vector
of variables Xm = (X1, . . . , Xm)

ρm+1τ (Xm+1;Xm) =
∑

x1,...,xm+1

pm+1(x1, . . . , xm+1)ln
pm+1(x1, . . . , xm+1)

pm(x1, . . . , xm)p(xm+1)
,
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where the subscript τ was used to stress the fact that the marginal redundancies are also
functions of the time-delay τ used to construct the m-dimensional embedding vectors. We
can also write [89]

ρm+1τ (Xm+1;Xm) = H(Xm)−H(Xm+1) +H(Xm+1)

and see that
ρm+1τ (Xm+1;Xm) = −H(Xm+1/Xm) +H(Xm+1) (8.11)

giving us the relation of CER to CEn and ApEn, respectively.
It has been shown in [27, 100] that for some range of τ parameter there exists an asymp-

totic relation between marginal redundancies and KSE of the dynamical system

lim
m→∞

ρmτ (Xm;Xm−1) = H(X1)− τhKS

This asymptotic relation provides the possibility of estimating KSE using marginal redun-
dancies [100]; i.e.

hKS ≈ lim
m→∞

ρmτ1(Xm;Xm−1)− ρmτ2(Xm;Xm−1)

τ2 − τ1
Thus, for a deterministic system we may obtain the estimate of KSE from the slope of
the marginal redundancy versus the time delay τ . However, in practice, Paluš proposed
computing the CER rather than estimating the exact entropy rates or equivalent KSE of
dynamical systems [87, 92]. He defined CER as

h(0) =
ρm+1τ0 (Xm+1;Xm)− ρm+1τ1 (Xm+1;Xm)

τ1 − τ0
or alternatively

h(1) =
ρm+1τ0 (Xm+1;Xm)− ‖ρm+1‖

‖ρm+1‖ ; ‖ρm+1‖ =
∑τmax

τ=τ0 ρ
m+1
τ (Xm+1;Xm)

τmax − τ0
.

Paluš2 suggests setting τmax to the value that for τ ≥ τmax : ρm+1τ (Xm+1;Xm) ≈ 0 and also
setting τ0 to zero. On several EEG epochs we observed that ρm+1τ (Xm+1;Xm) (for different
m and Q values) tends to zero for the value τmax ≈ 150 and we therefore used this value in
all our future analyses. By setting τ0 = 0 it is easy to see that h(0) is in fact identical to the
estimate of CEn (Appendix B.1). In the following, when we refer to CER the h(1) measure
is considered.

The fact that we do not estimate limit values providing the estimates of exact entropy
rates means that CER are similar to ApEn relative measures of regularity and predictability
of the investigated systems. Higher values of CER indicate less predictable and more irregular
behavior of the underlying processes.

8.1.4 Quantization effect

The algorithms discussed in the last two subsections assume the knowledge of joint and/or
conditional probability distribution functions of individual constructed embedding vectors.
In our study these probabilities were estimated based on the computation of empirical prob-
ability distribution functions using the technique of histograms. Consider that the observed
time series may have K distinct values. Then we may divide the values of time series {x(t)}
into Q categories (bins) for any Q in the range 1 ≤ Q ≤ K. However, as we already noted
in subsection 8.1.2 the number of bins increases as Qm and when Q and m increases without

2 Paluš also defines CER as ρm+1
τ0 (Xm+1;Xm)− ‖ρm+1‖, however, it is reported that those estimates which

do not depend on absolute values of ρmτ (.) are more stable and less influenced by the noise component contained
in the observed data [87].
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a corresponding increase of data samples many empty bins occur. This may significantly
influence the estimates of probability distribution functions resulting in incorrect estimates
of entropies or marginal redundancies in the case of CCEn or CER, respectively. In practice
we should ensure the number of data points must be a minimum of five times the number of
bins [149]3

N ≥ 5Qm

to correctly estimate m-dimensional entropies or marginal redundancies. On the other hand
for many practical problems we can not presume that a sufficiently long time series will be
available. Specifically, in the case of DOA monitoring only on-line or almost on-line systems
have practical meaning. Thus an appropriate trade off between both requirements has to be
found.

Another problem which arises with the quantization of the original data into Q levels
is to define the way in which the data are merged. Consider a decision to quantize data
into a predefined number of levels Q. One obvious method is to split the range of the
variables into Q equally spaced segments. Although this procedure will roughly preserve the
information about the distribution of individual variables it may be unreasonably sensitive
to extreme values. Further, in the case of the estimation of m-dimensional entropies or
marginal redundancies we are not interested in the distribution of individual variables rather
we are interesting in intervariable relations; i.e. the structure of the system. It was discussed
in [149] that the quantization of the variables into equally (or almost equally) populated
bins – equiquantization – may be profitable mainly due to this method being more sensitive
to the internal details of the distribution and embodies more information about it. Thus
equiquantization seems to be more optimal as it may preserve more structural information
in comparison to standard quantization into bins of equal length. The equiquantization will
generally provide a more ‘dense’ m-dimensional histogram in the sense of a lower number
of zero bins. Further, the equiquantization approach was successfully applied in the case of
CER estimation [87, 92] and also in our former study [105] where the method was used for the
estimation of several information-theoretic functionals. In the current study we also applied
equiquantization in the case of CCEn estimation. Note, that in this case the correction term
in (8.10) is considered to reflect a uniform distribution rather than the actual distribution of
the observed time-series. To make the correction term equal to the original proposal [99] we
have to compute the estimate Ĥ(X1) based on the quantization preserving actual distribution
of the time series as much as possible.

We experimentally compared the results when different values of Q,m,N and both quan-
tization approaches were used. However before we report these results we will briefly describe
other complexity measures considered in our experiments on the DOA monitoring task.

8.2 Other Complexity Measures

8.2.1 Nonlinear Correlation Index

The correlation dimension (CD) of an attractor is one of the most fundamental quantities of
low dimensional chaotic systems that can be computed from a time series [38, 40]. Assuming
a low dimensional chaotic origin of brain signals the CD estimated from EEG signals was used
to discriminate different dynamical states of the brain. However, spurious results revealed
problems in estimating CD from short or nonstationary EEG recordings corrupted by noise,
and also gave rise to the question of the validity of assuming a low dimensional, chaotic origin
of brain signals (see e.g. [56, 101, 88] and ref. therein). In spite of this fact, there is a belief
that measures based on the estimate of the CD may still provide a reasonable discrimination
between different dynamical states of the brain when correctly applied to the observed data
[61, 161].

3 For higher values of the Q parameter Paluš suggests an even more strict condition: N ≥ Qm+1 [86].
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In [67, 161, 160] the nonlinear correlation index (NCI) was used to quantify depth of
anaesthesia and to predict epileptic seizures, respectively. Although NCI is derived from the
algorithm used to estimate CD it does not provide an absolute value estimating exactly the
CD, rather it is designed to serve as a more robust, discriminative measure of changes in the
dynamical system under study. First the correlation sum

Cm(r) =
2

(N −∆n)(N −∆n− 1)

N
∑

i=1

i−∆n
∑

j=1

θ(r − ‖xm(i)− xm(j)‖) (8.12)

is computed usingm dimensional embedding vectors {xm(j)}N−(m−1)τ
j=1 . The term ∆n (Theiler

window) is used to exclude temporal correlations [134]. This makes the correlation sum
slightly different from the sum computed in the case of ApEn described in subsection 8.1.1.
Next we need to look for the scaling region, that is, a range of radius r values where

C ′
m(r) =

d logCm(r)

d log r

is constant. For an appropriately chosen embedding dimension m this constant will be the
estimate of CD. The authors then compute the averages of C ′

m(r) over the range of embedding
dimensions [m1,m2] and Nr radius values in [rl, ru]

d =
1

Nr

ru
∑

r=rl

1

m2 −m1

m2
∑

m=m1

C ′
m(r)

and define NCI as

NCI =

{

d : if d ≤ Dmax and Nr ≥ 5
Du : else

where Dmax ≈ 2 log10N is a maximum resolvable dimension as proposed in [115] and Du is
an arbitrary but fixed threshold value. The upper bound ru is defined as C ′

1(ru) > r∗ where
r∗ is a small value approaching 1. The authors define the lower bound rl as

rl = min
r
{|C ′

m∗(ru)− C ′
m∗(r)| ≤ 0.05C ′

m∗(ru) ∧ r < ru}

where m∗ is chosen to be a high embedding dimension. In [67] the authors provide a straight-
forward heuristic reasoning for the selection of these parameters. In our case, we discuss the
actual selection of the τ, r∗,m∗,m1,m2 and Du values in the next chapter.

8.2.2 Spectral Entropy

Spectral Entropy (SpEn) was introduced and defined as Shannon entropy [104]

SpEn = −
k
∑

i=1

p(ωi)lnp(ωi)

where p(ωi) is the probability density function (pdf) value at frequency ωi. The pdf is
obtained by normalization of the power spectral density function given by the Fourier Trans-
form. It is an entropic measure which can be used as a measure of system complexity and is
therefore included in this study. However, here the complexity of the system is understood
as the number of different processes making up the time series [104]. High SpEn will be due
to a large number of processes, while lower values of SpEn will indicate a smaller number
of dominating processes creating the time series. Regular, periodic processes with a single
dominant frequency will lead to zero values of SpEn whilst random white noise will provide
maximum values of SpEn due to a ‘flat’ power spectral density function.
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Significant SpEn changes would be grossly visible in graphical displays of the EEG fre-
quency spectrum, and would certainly have been described in early studies of the EEG effects
of anaesthesia. SpEn can be seen as a single value measure to quantify these changes. Further,
we would like to note that SpEn is a linear measure and its use to fully describe dynamics of
a stochastic process is limited to the case of a stationary Gaussian process fully determined
by its spectrum. We have already pointed out that in the case of a zero-mean stationary
Gaussian processes we can similarly estimate the entropy rate of the process through its
power spectral density function (8.6).



9. EXPERIMENTS

The following measures were assessed: Approximate Entropy (ApEn); Conditional Entropy
(CEn); Corrected Conditional Entropy (CCEn); Coarse-grained Entropy rates (CER); Gaus-
sian Process Entropy rates (GPER); Spectral Entropy (SpEn); Nonlinear Correlation Index
(NCI); Spectral Edge 95 (SEF95) and Bispectral Index (BIS).

Although we might first provide the comparison of these algorithms on more simple ex-
amples or artificially generated data we directly ‘jump’ into the domain of anaesthesiology;
i.e. the domain of our interest. This decision is prompted by the fact that it is difficult to
simulate EEG data measured under the real surgical conditions and also by the fact that the
evaluation of the individual measures on several sets of artificially generated data has already
been reported in [87, 90, 99].

9.1 Data Description & Collection

This study used EEG waveform data measured in eight adult patients undergoing routine
elective surgery. The patients were all between the ages of 30 and 75 years old, and were ASA
I-III (the American Society of Anaesthesiologists widely used scale of fitness for anaesthesia).
The surgical specialties represented were orthopaedics, gastro-intestinal surgery, and oph-
thalmology. The anaesthetic technique was not standardised and including target controlled
infusions (TCI) of propofol as well as inhalational anaesthesia. EEG data were tagged with
relevant clinical data which included premedicant and sedative medication, hypo or hyper-
thermia, thyroid disease, target propofol concentration, end-tidal agent concentration, and
clinical events such as gagging or eye-opening. The study met the requirements of the local
Ethical Committee.

The EEG was recorded continuously with a below-hairline bifrontal montage (Fp1-Fpz,
Fp2-Fpz, international 10-20 system, Aspect A-2000 monitor). This has been considered
suitable for many studies of anaesthetic depth, and the simple montage reflects the global
nature of EEG changes caused by sedation. The raw EEG data were manually cleared of
artifacts which were unphysiological, and data identified by the BIS monitor as corrupted
were removed. This left approximately 500 minutes of detailed tagged EEG data. The raw
EEG was digitized at 128Hz and then filtered between 0.5 - 30Hz. EEG epochs of 1204 data
points (8sec) were used for computation of individual measures employed in the study. The
epochs were taken in steps of 128 data points (1sec). The BIS values are computed from 60
second EEG segments and averaged over 15sec intervals (Aspect Medical Systems Inc.).

9.2 Results

Although we discuss the selection of parameters of individual measures later in the section,
in the case of spectral based measures the 512 point FFT was used. The power spectrum was
then computed for the frequency range 0.5-30Hz. Unit delay (τ = 1) was used to construct
embedded vectors in the case of ApEn, CEn , CCEn and NCI. In the case of NCI the
correlation sum (8.12) and the local slopes of its logarithm were computed using d2 function
of TISEAN2.1 software package [46]. Similar to [161] in all the cases the Theiler window was
set to ∆n = 10, m∗ = 25 and the range of embedding dimension [m1 = 10,m2 = 25] was
used. We observed that the values of r∗ parameter in the range [0.8, 0.9] provided more stable
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BIS SE95 SpEn ApEn CCEn eCCEn CEn eCEn CER eCER NCI GPER

BIS 1 0.48 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.5 0.6 0.52
SE95 0.48 1 0.89 0.95 0.85 0.96 0.84 0.95 0.89 0.9 0.52 0.93
SpEn 0.52 0.89 1 0.93 0.82 0.93 0.82 0.93 0.97 0.97 0.69 0.98
ApEn 0.52 0.95 0.93 1 0.91 0.98 0.91 0.98 0.93 0.93 0.59 0.97
CCEn 0.51 0.85 0.82 0.91 1 0.86 1 0.86 0.82 0.82 0.57 0.86
eCCEn 0.51 0.96 0.93 0.98 0.86 1 0.86 1 0.93 0.95 0.59 0.96
CEn 0.51 0.84 0.82 0.91 1 0.86 1 0.86 0.82 0.82 0.57 0.86
eCEn 0.51 0.95 0.93 0.98 0.86 1 0.86 1 0.93 0.95 0.61 0.95
CER 0.51 0.89 0.97 0.93 0.82 0.93 0.82 0.93 1 0.98 0.68 0.97
eCER 0.5 0.9 0.97 0.93 0.82 0.95 0.82 0.95 0.98 1 0.69 0.96
NCI 0.6 0.52 0.69 0.59 0.57 0.59 0.57 0.61 0.68 0.69 1 0.66
GPER 0.52 0.93 0.98 0.97 0.86 0.96 0.86 0.95 0.97 0.96 0.66 1

Tab. 9.1: Spearman’s ranked correlation coefficient computed from individual values averaged over
15sec intervals. EEG data recorded during general anaesthesia. CER(Q = 5,m = 3),
CEn(Q = 5,m = 3), CCEn(Q = 8,m = 5), ApEn(r = 0.5SD,m = 2), NCI(r∗ = 0.9).
Measures prefixed with e were computed using equiquantization.

results. The values of r∗ greater than 0.9 usually resulted in Nr < 5 on several epochs. The
NCI values greater than Dmax ≈ 6 were observed only on some awake stage EEG epochs.

We did not observe significant differences between the results computed from two EEG
traces recorded. In the following we report the results from the trace on which a smaller
number of artifacts was detected.

General assessment of the used measures

Visually comparing measures, in the light of the clinical data, showed some level of correlation
with the perceived depth of anaesthesia in all cases. Figure 9.1 shows a typical plot of
measures computed over the first 35min of a general anaesthetic.

Existing correlations between individual measures were quantified by Spearman’s ranked
correlation coefficient (SRC). Selecting sub-parameters for each measure, and varying the
averaging of the observed values provided a wide range of different settings for estimating
correlation among the measures. However, generally we observed high correlations between
the entropy rates measures (SRC> 0.8). We also observed high correlation between particular
entropy rates measures when equiquantization or standard quantization was used (SRC >
0.9). Spectral measures (SE95, SpEn and GPER) showed a high correlation with nonlinear
entropy rates measures (SRC 0.7 - 0.95). The correlation between NCI and other measures
was in some cases lower (SRC 0.6 - 0.9) but still showing significant statistical dependence
among the measures. Finally, a slightly lower correlation was usually found between BIS and
other measures (SRC 0.5 - 0.9). This may simply be due to mis-synchronization between the
recorded BIS values and the measures computed from raw EEG data. As we do not have the
exact formula for computation of BIS we cannot reliably answer the question about the level
of correlation between BIS and other measures. The example of SRC for the anaesthesia case
depicted in Figure 9.1 is provided in Table 9.1.

In the next step, the ability of each measure to discriminate stages of anaesthesia was
assessed. This was based on two examples which provided traces with two clinically different
stages of anaesthesia and therefore were suitable for quantifying the discriminative power
of individual measures. The initial trace was considered as a reference level and individual
measures were plotted and investigated as the difference from the mean divided by standard
deviation (SD) computed from the reference part. This provides a relative scale in units of
standard deviation. During each period, anaesthesia and surgical stimulus were stable, and
an ideal measure would contain little fluctuation. Discriminative power is therefore reflected
by the difference between the means, expressed in units of reference standard deviation.
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Fig. 9.1: Traces of individual measure over approximately 35min covering induction and mainte-
nance of general anaesthesia. First vertical line: i.v. propofol 2mg/kg. From second ver-
tical line to end: end-tidal desflurane concentration maintained between 3.4% and 4.5%.
ApEn(r = 0.5SD,m = 2), CCEn(Q = 6,m = 4), CER(Q = 5,m = 3), NCI(r∗ = 0.9).

9.2.1 Transition from moderate to light anaesthesia

Each measure’s ability to discriminate moderate (propofol level 6mg/L) and light (propofol
level 4mg/L) anaesthetic depth is shown in Figure 9.2 where the individual measures are
averaged over 15sec intervals (BIS is internally averaged over the same time interval). The
graph shows good separation of stages without significant overlapping of the values computed
during the individual anaesthesia periods. This data is presented as boxplots in Figures 9.3
and 9.4. These show the lower quartile, median, and upper quartile values and a whisker
plot and are plotted in pairs computed over the first period (propofol 6mg/L) (left) and
over a second period started 4min after the reaching the desired level of propofol 4mg/L
(right). First in Figure 9.3 the boxplots computed from unaveraged values are depicted (BIS
is not included as the unaveraged values are not available from the BIS monitor). In all
cases overlapping values are seen, however non-overlapping of the upper and lower quartiles
indicates a relatively high discriminative power. The boxplots show that in this case entropy
rates measures provide higher discrimination between the two levels of anaesthesia with CER
performing best. Figure 9.4 shows the same boxplot using 15sec averaged values. Again
as in Figure 9.2 no overlaps between the values from different anaesthesia stages indicate
high discrimination of all the measures. Although BIS clearly discriminates the two stages
we observed paradoxical behavior of BIS in this case and in Figure 9.5 we plotted BIS and
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Fig. 9.2: ApEn(r = 0.5SD,m = 3), CCEn(Q = 6,m = 4), CER(Q = 5,m = 3), NCI(r∗ = 0.8),
BIS, GPER, SPEn and SE95 during the transition from moderate to light anaesthesia.
The measures are plotted in a relative scale reflecting the difference between the means
during moderate and light anaesthesia (propofol levels 6mg/L and 4mg/L respectively)
in units of standard deviation (SD) computed during the stage of moderate anaesthesia.
Prior to the first vertical line the TCI propofol level was 6mg/L; the first vertical line
shows where TCI propofol target was set to 4mg/L; the second vertical line shows the
point when 4mg/L was achieved. The values of individual measures were averaged over
15sec intervals. Equiquantization was used in the case of CCEn and CER.
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Fig. 9.3: Boxplots of the data presented in Figure 9.2. The left-hand (blue) boxplot of each
pair represents a TCI propofol level of 6mg/L, the right-hand (green) boxplot repre-
sents a TCI propofol level of 4mg/L. ApEn(r = 0.5SD,m = 3), CCEn(Q = 6,m = 4),
CER(Q = 5,m = 3), NCI(r∗ = 0.8). The values of individual measures were not averaged.
Equiquantization was used in the case of CCEn and CER.

Signal Quality Index (SQI)1 as recorded from the monitor. The SQI changes approximately
6min after the beginning and this might be the cause of the small change in BIS at that time.
However the values of SQI are greater than 70% more than 3min before the target level of
propofol was decreased from 6mg/L to 4mg/L (first vertical line) the sudden increase of BIS
preceding this event therefore cannot be readily explained by a deterioration in signal quality.

9.2.2 Detecting awakening from general anaesthesia

Figure 9.6 shows the measures applied to emergence from anaesthesia. Entropy rates increase
progressively as anaesthesia lightens. The increase in BIS is not as dramatic and shows a
paradoxical decrease after the stage of eye-opening in response to speech. The spectral
measures SE95 and GPER clearly reflect anaesthetic emergence.

9.2.3 Parameters and type of quantization selection

The parameters of all entropy rates measures were tuned using appropriate ranges and com-
pared on the two examples investigated in detail. For measures computed from empirical
probabilities (CEn, CCEn, CER), when the restriction to the minimum number of data
points was kept in mind, we did not see any significant changes in the discriminative power
of the measures. Using the correction term in CCEn allowed us to increase the number of
quantization levels Q to 8 when embedding dimension m = 5 or m = 6 was assumed, how-
ever the results were similar to the results provided by CEn using lower values of Q and m
parameters (typically Q = 5,m = 3). As predicted, increasing the embedding dimension to
5 or 6 degraded the performance of CEn. In all cases equiquantization produced superior
results to standard quantization, Figure 9.7.

We observed that in the case of NCI the change of r∗ parameter in the range of [0.75, 0.9]
did not influence the discrimination power, however, as we discussed above for r∗ values
greater than 0.9 we observed a higher number of epochs with Nr < 5 (in such a case the
average of two nearest epochs for which NCI values were determined was taken) and also
lower discriminative power of NCI.

1 The values of SQI between 50%-100% indicate a good quality signal and hence reliable values of BIS. BIS
values are not provided if SQI is less than 15% (Aspect Medical Systems Inc.).
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Fig. 9.4: Boxplots of the data presented in Figure 9.2. The left-hand (blue) boxplot of each pair
represents a TCI propofol level of 6mg/L, the right-hand (green) boxplot represents a TCI
propofol level of 4mg/L. ApEn(r = 0.5SD,m = 3), CCEn(Q = 6,m = 4), CER(Q =
5,m = 3), NCI(r∗ = 0.8). The values of individual measures were averaged over 15sec
intervals. Equiquantization was used in the case of CCEn and CER.
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Fig. 9.5: BIS (lower trace) and Signal Quality Index (upper trace) recorded during the period of
transition from moderate to light anaesthesia. Prior to the first vertical line the TCI
propofol level was 6mg/L; the first vertical line shows where TCI propofol target was set
to 4mg/L; the second vertical line shows the point when 4mg/L was achieved.
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Fig. 9.6: ApEn(r = 0.5SD,m = 2), CCEn(Q = 6,m = 4), CER(Q = 5,m = 3), NCI(r∗ = 0.8),
BIS, GPER, SpEn and SE95 during emergence from general anaesthesia. The measures
are plotted in a relative scale established prior to the first vertical line. The baselines were
set to the mean values, and the values then charted in units of standard deviation (SD).
The first vertical line indicates when TCI propofol level of 4mg/L was set to 0mg/L. The
second vertical line shows when the patient began to gag with the Laryngeal Mask Airway
in situ, and the third vertical line denotes eye-opening in response to speech. The values
of individual measures were averaged over 15sec intervals. Equiquantization was used in
the case of CCEn and CER.
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Fig. 9.7: A comparison of two quantization methods – equiquantization (blue) and standard quan-
tization (red) – used to compute CER(Q = 5,m = 3) (left) and CCEn(Q = 6,m = 4)
(right). The graphs show the transition from moderate to light anaesthesia. For the
description of the plotted values and the vertical lines see Figure 9.2.

Finally, in the case of ApEn, assuming a fixed number of data points, we may influence the
performance of the measure by varying the sub-parameters grain r and embedding dimension
m. As we have already noted in the case of approximately 1000 data points the embedding
dimension should not be significantly high, and we confirmed that m = 2 or m = 3 provided
good results. The grain parameter is usually selected in proportion to the standard deviation
of the investigated EEG epoch. We also observed that increasing r values resulted in smoother
estimates in agreement with the theoretical assumption of inherent noise filtering. High r
values, however, may lead to the loss of important system information. We investigated this
trade off in the case of transition from moderate to lighter anaesthesia as described above.
In Figure 9.8 we plotted the averages of the ApEn values in dependence on the r parameter
selected. ApEn values from the second stage (values computed over final 30 minutes were
used) referenced to the mean value of the first stage were used. The corresponding variance
of ApEn values over the first stage is also depicted. It can be readily seen that values around
0.5SD may provide a good trade off between discriminative power and loss of detailed system
information due to the selection of too high values of r.

9.2.4 Surrogate Data Test & Nonlinearity

The results reported on the two TCI cases indicate that the CER, CCEn, ApEn and NCI
may provide a better discrimination between the two different stages of anaesthesia monitored
during surgery compared to linear measures; i.e. SpEn, SE95 and GPER. However, it is still
not clear whether this is due to the nonlinear character of the investigated EEG or simply due
to better numerical properties of the nonlinear measures used. In agreement with neurological
observations that deeper anaesthesia is characterized by more regular behavior compared to
light or awake stages we assume that the transition from deeper to light anaesthesia is also
associated with the increase of nonlinearity. Five different surrogate data sets from nonfiltered
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Fig. 9.8: ApEn performance showing the effects of varying the grain parameter r. Source data was
from the transition between moderate and light anaesthesia (as Figure 9.2). The solid line
shows the difference between the means for the two stages of anaesthesia (TCI propofol
6mg/L; and 4mg/L). Following 6 minutes for equillibration, 30 minutes of data were used
to compute stage 2 mean values. The dashed line shows the standard deviation measured
during the baseline stage (TCI propofol 6mg/L).

raw EEG were generated. Surrogate data reflects linear properties of the original data (sample
autocorrelation, sample amplitude distribution), however, the nonlinear structure is destroyed
by phase randomization [122]. The surrogates function of the TISEAN2.1 software package
was used to generate iterative FFT surrogates [46]. CER and GPER from nonfiltered EEG
and surrogate CER (sur-CER) from the stochastic surrogate data were computed. However,
rather than investigate the discrimination power of these measures we compared the ratio
between the median computed over the reference part and the median computed a) over
30 minutes starting 1min after reaching the desired level of propofol 4mg/L in the case of
transition from moderate to light anaesthesia b) over the last 4.5min (the onset of awakening
stage) in the case of emergence from anaesthesia. We assume that the higher ratio indicates
a better ability of a particular measure to reflect an increase in nonlinearity. In Figure 9.9 we
plotted the individual ratios in dependence on averaging interval used to smooth the CER,
sur-CER and GPER values. Although we may see a difference between ratios corresponding to
CER and GPER there is only a small increase of CER ratios in comparison to sur-CER. Thus,
we cannot provide a conclusive answer to the question whether the improved discrimination
of CER observed on the two propofol cases is caused by the CER reflecting the nonlinear
character of the investigated time-series or simply by better numerical properties of CER
compared to spectral based measures.
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Fig. 9.9: Dependence of ratio between the medians computed from two stages of TCI of propofol
anaesthesia on smoothing window used. Five different surrogate data sets were used.
CER(Q = 5,m = 3), sur-CER(Q = 5,m = 3). Left: Transition from moderate to light
anaesthesia. Right: Awakening from general anaesthesia.



10. SUMMING UP

Many different measures have been proposed for the purpose of quantifying depth of anaes-
thesia from analysis of the EEG. We have mainly focused on measures related to the concept
of entropy rates estimation and assessed their ability to discriminate different anaesthetic
stages. The nonlinear correlation index as an alternative complexity measure was also con-
sidered. Particular emphasis was put on each measure’s suitability for assessing limited
amounts of noisy data; i.e. EEG traces recorded in the typical operating theatre environ-
ment. These nonlinear complexity measures were compared with established and widely used
spectral measures BIS and SE95. SpEn was considered as a measure quantifying changes in
the frequency domain which correspond to varying EEG data characteristics. We pointed out
the close relationship between SpEn and entropy rates computed from the periodogram when
a stationary Gaussian process is considered to generate the EEG. Assessing any nonlinear
component in the EEG would however require one of the other techniques studied here.

The presented work has confirmed nonlinear complexity measures to be useful for de-
termining depth of anaesthesia, and has shown that different complexity measures differ in
their ability to identify levels of light anaesthesia. These differences have been explored in
some depth in order to identify the factors involved and their significance. The limited size of
this study does not permit definite and detailed conclusions about the applicability of these
techniques to the wide range of conditions encountered in clinical practice.

Physiological justification

During the transition from awake to anaesthetised states the EEG becomes increasingly influ-
enced by thalamic oscillators, and this synchronisation may provide a physiological relevance
for measuring EEG entropy rates. The function of these oscillators is unknown, but EEG
regularity and predictability may change as a result of this process and entropy rates can
be used to measure these changes. Entropy rates tend to zero for processes with periodic
repetition and conversely tend to high values for processes with aperiodic or random behavior.

One estimate of EEG entropy rates (ApEn) has been shown to decrease progressively
as anaesthesia deepens [10]. It has also been demonstrated that ApEn applied to burst
suppressed data showed a low entropy rate – tempting speculation that entropy rates might
be a unified measure of anaesthetic depth [11]. We considered whether other estimates of
entropy rates might be more suited to measuring depth of anaesthesia.

Quantifying differences between complexity measures

Of the seven measures assessed, four had been previously applied to physiological data, but
not to EEG data recorded during anaesthesia (CEn, CCEn, CER, GPER); the other three
had been investigated individually as measures of anaesthetic depth (ApEn, NCI, SpEn).
Although differences between these measures were obvious on visual inspection of the traces,
quantifying these differences is difficult since there is no benchmark gold-standard measure
that can be applied where the anaesthetic technique is not standardized. Unfortunately
standardizing anaesthetic technique then provides no information for variability due to dif-
ferences in technique. We therefore quantified the differences between these measures using
traces where the only varying factor was the blood propofol concentration. This is a cir-
cumstance where BIS is known to perform reliably, and would provide a useful comparison.
All the traces studied reflected moderate to light depth of anaesthesia – less than 3 percent
showed burst-suppression.
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Similarity and discriminative power of complexity measures

Although the individual complexity measures are derived from similar theoretical assumptions
they have different numerical properties. A high level of correlation among the measures was
observed suggesting similar behavior of the measures. This correlation was seen across all
the cases studied here, despite no standardization of the anaesthetic technique.

The detailed results reported here indicate that the investigated nonlinear complexity
measures CCEn, CEn, CER, ApEn and NCI may provide better discrimination between
two different stages of anaesthesia than spectral measures (SpEn, SE95 and GPER). This is
not necessarily due to some nonlinear component of the EEG but may simply reflect better
numerical properties of the measures. Other researchers have also reported a significant dif-
ference in discriminative power between GPER and CER when used to assess the pre/ictal
EEG [92]. However when EEG surrogate data were used to compute CER a smaller differ-
ence was observed. Regarding the numerical properties of individual methods, it has been
suggested [92] that the superior performance of nonlinear entropy rates measures is based on
a filtering element which can be identified in all these methods (quantization into Q levels
in the case of CEn, CCEn and CER and the selection of grain parameter r in the case of
ApEn).

This is in contrast to the measures derived from frequency characteristics where noise
present in the original recordings of EEG is necessarily incorporated in the final estimates.
Further confirmation of this source of error is that ‘optimal’ values for the r parameter in
ApEn are higher (0.5SD) than the recommended values 0.1-0.25SD [98]. Similarly smaller
values of the r∗ parameter (0.8-0.9) in the case of NCI in comparison to [160, 161] (r∗ > 0.9)
indicate the selection of a wider scaling region. Our findings suggest that this loss of detailed
system information and higher sensitivity to detect spikes or data periods of higher absolute
values may not matter when the objective is discrimination between different anaesthetic
states.

Finally, the non-stationary nature of the EEG time-series limits measurement to less
than 15-30sec windows which may contain significant amounts of noise. This limits the data
available for analysis and it would seem appropriate to use the correction term included in
CCEn and to use equiquantization rather than standard quantization.

Multiple component strategies

Multiple component strategies have been used. For example BIS uses a proprietary com-
bination of three different measures (burst suppression ratio, relative alpha/beta ratio, and
bicoherence between individual frequencies) optimized using multivariate regression on a large
clinical database (Aspect Medical Systems Inc.). Combining spectral and nonlinear complex-
ity measures in this way may suggest solutions which combine the relative merits of both
these approaches.

Further research

Simple spectral measures are known to provide useful information about anaesthetic depth
and are less sensitive to the values of the parameters used. This contrasts with investigated
complexity measures which present the user with the problem of selecting appropriate pa-
rameter values. For example, the most appropriate parameters for ApEn identified in this
study differed from those suggested by Bruhn et al. [10]. Further and larger clinical studies
will be required before definitive statements can be made about the optimum values of these
parameters. This study suggests that, in isolation, nonlinear complexity measures provide
superior discrimination of anaesthetic depth over spectral measures. It is still unknown how
well these measures will generalize across widely differing anaesthetic drug regimens.



11. CONCLUSION

Two different problems of reflecting brain functioning were addressed. This involved human
performance monitoring during the signal detection task and depth of anaesthesia monitoring.
Before we will discuss common aspects of both parts of the thesis and how the methods
investigated in the individual parts may be combined, we first summarize the main results
separately.

• New statistical learning theory based on SRM Inductive Principle gave rise to a num-
ber of powerful kernel-based algorithms which were experimentally shown to provide
in many research areas the same or superior results in comparison to existing tech-
niques. These kernel-based techniques were found very efficient when observed data
are mapped to a high dimensional feature space where usually algorithms as simple as
their linear counterparts in input space are used. A good example are Support Vectors
Classifiers which were shown to provide in many fields superior results to the existing
classification techniques (see [82] and refs. therein). Moreover, these algorithms are
independent on the dimension of input data sets and thus in the case of physiological
measurements usually associated with a high dimensional representation their use may
by highly profitable. In the thesis we focused on kernel-based regression techniques.
We extended the family of regularized, kernel-based least squares regression models
and provided theoretical and experimental comparisons among the models. Promising
results on one artificially generated and one real world data sets provided an indica-
tion of applicability of the approaches into the domain of physiological data analysis.
Finally, we have shown, that the extraction of the nonlinear principal components by
Kernel PCA or by the EM approach to Kernel PCA may provide a better structural
representation of the investigated ERP.

• We have found that complexity measures investigated in the thesis may be as good or
better indicators of depth of anaesthesia in comparison to the existing, mainly spectral
based techniques. These findings are even more valuable from the point that during our
study several similar observations and results were reported when some of the investi-
gated measures were used on different EEG data sets recorded during the anaesthesia.
This opens a new area of more detailed and extensive research into this very important
medical problem of depth of anaesthesia monitoring.

Although the individual parts of the thesis were treated in a parallel way we may find fur-
ther problems where the methodologies described are applicable together. We have already
mentioned that in the case of anaesthesia only measures or their combination which are
extensively evaluated on a large clinical database may be more widely acceptable by anaes-
thesiologists and result in new depth of anaesthesia monitors. This will inevitably bring
us to the problem of the construction of appropriate classifiers or in the case of continuous
response variable to the construction of appropriate regression models. An example of this
is BIS where individual measures were optimized using a multivariate regression technique.
Thus we may hypothesize that the use of the kernel-based regression techniques discussed
in the part A of the thesis may be also profitable here. On the other hand we have demon-
strated that the complexity measures presented in the second part of the thesis may provide
us features which represent the changes of the investigated EEG traces under different brain
states. We believe that these results may be also applicable to the domain of monitoring of
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human performance under different cognitive tasks where the measures may provide better
representation of ERP or EEG recordings. We also believe that the reported theoretical and
practical results will be applicable to different areas of physiological data analysis and will
attract the attention of different researchers.

Further work

We have partially reported possible future extensions of the individual methodologies in
the end of particular parts of the thesis. The author of the thesis will be working with
the research group at NASA Ames Research Center and will concentrate on possibilities
to improve reliability of the detection of ERP and other electroencephalographic recordings
time-locked to specific stimulus or cognitive activity. The proposal for this project is highly
motivated by the results achieved on ERP processing reported in the thesis. The application
of the studied nonlinear regression techniques with the aim of signal de-noising and the
possibility of using a priori knowledge about the desired signal to the construction of more
appropriate kernel functions will be investigated. Future proposed collaboration with Dr
Alan Hope will be oriented to the confirmation of usefulness of the investigated complexity
measures for a wider range of anaesthetic agents, different surgical condition and groups of
patients. Finally we believe that this will bring us to the possibility of the combination of
both approaches as suggested above.
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A.1 Implementation of the EM to KPCA algorithm

First assume the E-step; i.e equation (3.18) Y = (ΓTKΓ)−1ΓTK. In first step we have to
allocate and compute the (n × p) Γ and (p × p) ΓTKΓ matrices. The computation of the
latter matrix does not require storing of the (n× n) Gram matrix K because the procedure
can be done by the elements of K. In next step we can compute the right hand side (p× n)
ΓTK matrix. However this will increase the memory requirements only by allocating one n
dimensional vector into which we need to temporarily store the results of multiplication of
one particular row of ΓT matrix with the columns of K. It is clear that this procedure can
significantly slow down the algorithm. So, if we have enough memory we can perform the
procedure for a couple of rows of Γ matrix at the same time. Moreover, if we can allocate
additional (n × p) matrix the whole algorithm can be significantly faster as we will need to
compute ΓTK only one time. In the next step we need to compute the Y matrix, however
this will not increase the memory requirements because now we can overwrite the ΓTK

matrix. Up till now we assumed we are dealing with a ‘centralized’ K matrix. As we noticed
in subsection 3.1.1 the centralization is given by K ← K − 1nK − K1n + 1nK1n where
1n is a (n × n) matrix of 1/n elements. More detailed look will reveal that the individual
columns {[1nK]j}ni=j of the 1nK matrix consist of the same numbers 1

n

∑n
i=1Kij and that

the K1n is just the transpose of 1nK. Similarly we can see that the elements of 1nK1n are
1
n2

∑n
i,j=1Kij . To speed up the centralization procedure this n+1 values can be computed in

advanced and stored during execution of the EM algorithm. To compute the new Γ matrix
in M-step Γnew = YT(YYT)−1 we can use the same approach as described for E-step. We
can see that again we need to allocate the (n× p) and (p× p) matrices plus an n-dimensional
vector.

Summarizing the both steps we can see that the memory requirements can be reduced to
the O(p2) +O((p+1)n), however, as we discussed above, this will be done at the expense of
the speed the algorithm. We conjecture that a good compromise can be achieved by allocating
extra (p× n) space for storing of the ΓTK matrix.

A.2 Two effects of multicollinearity

To demonstrate two effects of multicollinearity we adopted a similar example as described in
[80]. Consider the linear regression model

y = b1x1 + b2x2 + η,

where x1, x2, y ∈ R and η ∼ N(0, σ2). Further assume that the variables x1, x2 and y are
scaled to unit length and denote the correlation between x1 and x2 as r12 and by rjy the
correlation between xj and y, j = 1, 2. The least squares estimate of the regression coefficients
b1, b2 is then given by the solution of normal equations

(XTX)b̂ = XTy
[

1 r12
r12 1

] [

b̂1
b̂2

]

=

[

r1y
r2y

]
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The inverse of XTX will be

C = (XTX)−1 =

[

1/(1− r212) −r12/(1− r212)
−r12/(1− r212) 1/(1− r212)

]

Now, recall that in the considered regression model we may express the variance and covari-
ance of the estimates b̂1, b̂2 as var(b̂j) = Cjjσ

2; j = 1, 2 and cov(b̂1, b̂2) = C12σ
2, respectively,

where Cij ; i, j = 1, 2 are elements of C [80]. The strong multicollinearity between x1, x2
reflected by |r12| → 1 will result in var(b̂j) → +∞ and similar in cov(b̂1, b̂2) → ±∞ in
dependence on the sign of the correlation coefficient r12.

Similarly it may be shown that in the case of p regressor variables the diagonal elements
of C = (XTX)−1 are

Cjj =
1

1−R2j
j = 1, 2, . . . , p

where R2j is a coefficient of multiple determination between xj and the rest of regressor
variables. If there exists a strong multicollinearity between xj and any subset of the other
p− 1 regressor variables this coefficient will be close to unity.

Consider now the squared distance from b to b̂

L2 = (b̂− b)T (b̂− b).
The expected squared distance is

E[L2] = E[(b̂− b)T (b̂− b)] =∑p
i=1E[(b̂i − bi)2] =

∑p
i=1 var(b̂i) =

= σ2trace(XTX)−1 = σ2
∑p

i=1 1/λi,

where we used the facts that E[b̂] = b and that trace of matrix is equal to the sum of its
eigenvalues. Thus if the matrix XTX is ill-conditioned at least one of its eigenvalues {λi}pi=1
will be small implying large distance between b̂ and b [80]. It may be also seen from

E[L2] = E[(b̂− b)T (b̂− b)] = E[b̂T b̂− 2b̂Tb+ bTb]

or equivalently from
E[b̂T b̂] = bTb+ σ2trace(XTX)−1

that the vector b̂ will be generally longer than the vector b. This implies the estimate b̂
having coefficients too large in absolute value.

A.3 Kernel Functions

First, we describe several types of more frequently used kernel functions satisfying Mercer’s
theorem. Then several rules to create new kernel functions are provided.

A.3.1 Examples of Kernel Functions

Polynomial Kernels

Polynomial kernels of dth (d ∈ N) order have the form K(x,y) = ((x.y)+c)d and correspond
to a dot product in the space of dth order monomials of the input coordinates. Assume a
nonlinear mapping

Φ : R2 → R6
(x1, x2) → (x21, x

2
2, x1
√
2c, x2

√
2c, x1x2

√
2, c)

then for the product in a feature space we may write

(Φ(x).Φ(y)) = x21y
2
1 + x22y

2
2 + 2cx1y1 + 2cx2y2 + 2x1x2y1y2 + c2 = ((x.y) + c)2

Usually we consider c = 1 or c = 0 corresponding to inhomogeneous and homogeneous
polynomial kernels, respectively.
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Translation Invariant Kernels

The kernels belonging to this group are of the form K(x,y) = K(x− y) and since the inner
product in a feature space corresponding to K(x − y) is unchanged if the input vectors are
translated by the same vector they are translation invariant.

The well-known representatives of translation invariant kernels are radial kernels1 K(‖x−
y‖) into which category the widely used Gaussian kernel

K(x,y) = e−(‖x−y‖2/d)

belongs. The parameter d controls the width the bell-shaped Gaussian kernels. The condi-
tions for the use of different type of translation invariant kernels as admissible kernels were
discussed in [129].

Hyperbolic Tangent Kernels

The hyperbolic tangent kernels are of the form K(x,y) = tanh(κ(x.y) + θ) however they
satisfy Mercer’s condition only for some range of the κ, θ parameters (e.g. for κ < 0 or θ < 0
the condition is not satisfied [13]). The SVM models with this type of function correspond
to the two-layer perceptron (artificial neural networks) learning machines.

Trigonometric Polynomials (Dirichlet Kernels)

Considering a 2d + 1 dimensional feature space spanned by the Fourier expansion (trigono-
metric monomials)

1√
2
, cosx, sinx, . . . , cos dx, sin dx

the Dirichlet kernels

K(x, y) =
1

2
+

d
∑

k=1

(cos kx cos ky + sin kx sin ky) =
sin (d+ 1/2)(x− y)

sin (x−y)
2

were constructed in [155] for interpolating data. For simplicity we assumed one-dimensional
input data. In the case of higher dimensions the kernel can be computed as the sum over
kernels computed using individual components of the input vectors [81].

However, it has been shown in [129] that this type of kernel corresponds to a regularization
operator which suppresses only a finite band of frequencies and may lead to less smooth
function estimates.

Kernels Generating Splines

In [155] the kernels generating the spline functions; i.e. piecewise polynomial functions of the
form

fd(x) =
d
∑

r=0

arx
r +

n
∑

s=1

ws(x− ts)d+ where (x− t)+ = max{(x− t), 0}

defined on the interval [0, a], 0 < a < ∞ were considered. t1, . . . , tn ∈ [0, a] are the nodes,
ar, ws are the real values and d ∈ N represents the order of the spline function.

Assuming the d+ n+ 1 dimensional feature space spanned by

1, x, . . . , xd, (x− t1)d+, . . . , (x− tn)d+
the inner product that generates the splines of order n in one dimension was derived

K(x, y) =
d
∑

r=0

xryr +
n
∑

s=1

(x− ts)d+(y − ts)d+

1 Radial kernels are also rotation invariant.
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The generating kernel for the N dimensional splines is then the product of N one-dimensional
generating kernels [155]. Further, in the case of SVM applications the authors considered an
infinite number of nodes leading to the inner product of the form

K(x, y) =
d
∑

r=0

xryr +

∫ a

0
(x− ts)d+(y − ts)d+

Thus for linear splines we have the generating kernel

K(x, y) = 1 + xy + xymin(x, y)− (x+ y)

2
(min(x, y))2 +

(min(x, y))3

3

Finally, in the case of assuming in practical applications Bd splines [148]

Bd(x) =
d+1
∑

r=0

(−1)r
d!

(

d+ 1

r

)

(

x+
d+ 1

2
− r

)d

+

the corresponding kernel function has the form [155]

K(x, y) =

∫ ∞

−∞
Bd(x− t)Bd(y − t)dt = B2d+1(x− y).

A.3.2 Constructing Kernels from Kernels

To create new kernels function from existing kernels the following proposition (for the proof
see [16]) may be used

Proposition: Let K1 and K2 be kernels defined over X × X ,X ⊆ RN , a ∈ R+, f(.) a real
valued function on X , Φ a mapping X → RM associated with a kernel K3 defined on
RM ×RM , B a symmetric positive semi-definite N ×N matrix and p(.) a polynomial
with positive coefficients. Then the following functions are kernels

1. K(x,y) = K1(x,y) +K2(x,y)

2. K(x,y) = aK1(x,y)

3. K(x,y) = K1(x,y)K2(x,y)

4. K(x,y) = f(x)f(y)

5. K(x,y) = K3(Φ(x),Φ(y))

6. K(x,y) = xTBy

7. K(x,y) = p(K1(x,y))

8. K(x,y) = e(K1(x,y))

Further forms for making kernels were discussed in [57, 44, 158, 2, 16].

A.4 Translation invariant kernels - regularization property

The regularization properties of a translation invariant kernel K(x − y) in connection to
regularization networks and SVM were discussed in [35, 33, 129]. Similar to [33] we consider
a continuous, symmetric and periodic functionK(x) whose Fourier coefficients αn are positive.
For simplicity we also assume K to be the function of one variable defined over [0, 2π]. The
extension to the case when K is defined over RN can be also found in [33]. We can expand
K into a uniformly convergent Fourier series

K(x) =
∞
∑

n=0

αn cos(nx) = α0 +
∞
∑

n=1

αn cos(nx)
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and using the elementary trigonometric formula cos(x − y) = cosx cos y + sinx sin y we can
write

K(x− y) = α0 +
∞
∑

n=1

αn sin(nx) sin(ny) +
∞
∑

n=1

αn cos(nx) cos(ny). (A.1)

Thus, using the fact that any kernel function may be expanded into the form (2.17) we can
see that the function (A.1) defines RKHS H over [0, 2π] with orthogonal basis

{ψi(x)}∞i=1 ≡ (1, sin(x), cos(x), sin(2x), cos(2x), . . . , sin(nx), cos(nx), . . .)

Thus, any function in H may be expressed in the form f(x) =
∑∞

i=1 biψi(x) where bi are
Fourier coefficients of f . Using the norm in H as defined in section 2.4.1 we can see that

‖f‖2H =
∞
∑

i=1

b2i
λi
< +∞

and since the sequence λi is decreasing the constraint on the norm to be finite implies a
decrease to zero of the Fourier coefficients corresponding to higher frequencies. The rate of
decrease depends on the selected kernel function and defines the smoothness properties of
the kernel.
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B.1 On connection of h
(0) and CEn measures

Using the equation (8.11) we can write

h(0) =
−Hτ0(Xm+1/Xm) +Hτ0(Xm+1) +Hτ1(Xm+1/Xm)−Hτ1(Xm+1)

τ1 − τ0
,

where the subscript τ was used to stress the dependence of the individual entropies on
time delay used in construction of embedding vectors. In practice (m + 1)th components
of embedding vectors constructed from observed time-series using τ0 and τ1 will differ in
(m − 1)(τ1 − τ0) data points. However, due to the assumed stationarity of the process we
may consider Hτ0(Xm+1) ≡ Hτ1(Xm+1) and write

h(0) =
Hτ1(Xm+1/Xm)−Hτ0(Xm+1/Xm)

τ1 − τ0
.

Finally, for τ0 = 0 we have Hτ0(Xm+1/Xm) = 0 and h(0) is simply the estimate of CEn.


