Assessment of Mental Fatigue in Healthy Participants
During Extended BCI-HMD Sessions
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Introduction

Brain—computer interfaces (BCls) with virtual reality (VR) via head-mounted displays (HMDs) show strong potential for post-stroke rehabilitation. However, prolonged BCI-HMD use

can induce mental fatigue, reducing motor imagery (Ml) performance and engagement.

This study investigates neural markers of fatigue during extended BCI-HMD VR sessions in healthy participants. Using N-way Partial Least Squares (N-PLS), we extracted latent EEG

patterns associated with fatigue induced by sustained Ml.

Case Example: Subject 05

Experimental Setup and Procedure

We implemented a three-session protocol to investigate mental fatigue during pro-
longed use of a BCI-HMD system. Each VR session comprised three blocks of motor
imagery trials, with continuous EEG monitoring and pre/post resting-state recordings
to capture fatigue dynamics.
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Participants completed three experimental conditions:
e Mirror Box session - to extract individual sensorimotor activity models
e Motor Imagery (Ml) session - participants performed motor imagery in VR

e Control session -participants passively observed the VR environment
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During the Mirror Box session we extracted the p rhythm for VR motor imagery training

for neuro-motor rehabilitation.
1. Train with mirror-box 2. Extract PARAFAC model 3. Trainin VR
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Results

Initial N-PLS analyses revealed that temporal tracking confirmed progressive
accumulation of mental fatigue across sessions, even with real-world EEG con-
taining artifacts.

However, a key question remained:

— How can we better isolate fatigue-specific EEG signatures from concur-
rent task-related, sensorimotor, activity?

We deflated the 10-channel 1 components used to detect motor imagery
from the original N-PLS model to isolate fatigue-related effects independent
of training.
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Even after deflating the u rhythms, the progression of predictions from one
class to the next remains clearly visible.

e Applied N-PLS to extract latent components from the Tﬂme
EEG tensor (trials x channels x frequencies) EEG /
* N-PLS components can be interpreted via spectral features in —» "™

resting-state data
Iterations:

e Find weights/loadings to maximize co-
variance with Y
t: scores, w(23): loadings, q: re-
sponse loadings

e Compute rank-1 tensor:
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e Deflate: X + X — X,
Y+—Y— tfq;_

e Repeat for all components f =
1,..., F

Scores tr used as predictors
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We deflated the trained p-rhythm to ensure predic-
tions reflect neural modulations beyond motor imagery a‘A_&
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where t, is the mode-1 score vector, w\”) and w'> are T -

the mode loadings, and o denotes the outer product. /\
The residual tensor Xyenated is then used for prediction. o 9 .
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The pu-component does not influence the fatigue slope; overall
the model remains robust and resistant to training-induced effects.
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N-PLS prediction for subject 05 - Ml session (left) and control session (right)
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