Frequency, space and time tensor decomposition of motor imagery EEG in BCI applied to post-stroke neurorehabilitation

Roman Rosipal^{1,2}, Zuzana Rostakova¹, Natalia Porubcova¹ Leonardo J Trejo²

¹ Department of Theoretical Methods Institute of Measurement Science, SAS Bratislava, Slovak Republic

² Pacific Development and Technology, LLC Capitola, CA

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

IWANN 2023, June 19, Ponta Delgada Session A.1: Real World Applications of BCI Systems To develop a clinically efficient, mentally controlled system for motor recovery after stroke.

Phase 1 (2014 - 2018)

Phase 2 (2018 - 2023)

BCI with Head-Mounted Display (BCI-HMD)

Desynchronization of SMR

(Adapted from Beatty, 1995)

イロト イポト イヨト イヨト

Narrowband Oscillatory EEG Sources How to Get Them?

Trends Cogn Sci. 2014 September ; 18(9): 480-487. doi:10.1016/j.tics.2014.04.003.

Scale-free brain activity: past, present and future

Biyu J. He

Neuron. 2010 May 13; 66(3): 353-369. doi:10.1016/j.neuron.2010.04.020.

The temporal structures and functional significance of scale-free brain activity

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

```
Biyu J. He<sup>1,*</sup>, John M. Zempel<sup>2</sup>, Abraham Z. Snyder<sup>1,2</sup>, and Marcus E. Raichle<sup>1,2,3,4</sup>
```

- "..... there are two types of brain activity that coexist: the broadband, arrhythmic activity and the narrow-band, rhythmic oscillations". [He, 2014]
- EEG recorded from the scalp originates from electrical currents generated by a mixture of a large number of quasi-random neural sources across the entire cortex (broadband background EEG) and a small number of more localized cortical sources whose power spectra are narrow-band (oscillatory). [Nunez, 2006; He, 2014]

Decomposition of the power spectrum density (PSD) into the fractal (scale-free) and oscillatory components underlying the eyes-closed awake state recorded after mirror- box training. Plots represent means of the IRASA decomposition computed separately tor 4-s-long overlapping segments of approximately two minutes long resting block at two central EEG electrodes C3 and C4. Frequencies were restricted to the range 1-25 Hz for the visualization purposes.

EEG Latent Structure in Time-Space-Frequency - tensor representation

ヘロト ヘ回ト ヘヨト ヘヨト

Goal: for **tensor** $\mathbb{X} \in \mathbb{R}^{I \times J \times K}$ find its decomposition, i.e. matrices

$$\begin{aligned} A &= [a_1, \dots, a_F] \in \mathbb{R}^{I \times F}, & \|a_f\| = 1, \\ B &= [b_1, \dots, b_F] \in \mathbb{R}^{J \times F}, & \|b_f\| = 1, \\ C &= [c_1, \dots, c_F] \in \mathbb{R}^{K \times F}, & \|c_f\| = 1 \end{aligned}$$

such that

$$\mathbb{X} = \sum_{f=1}^{F} a_f \circ b_f \circ c_f + \mathbb{E}$$
 $x_{ijk} = \sum_{f=1}^{F} a_{if} b_{jf} c_{kf} + e_{ijk}$

where o is outer product

$$x_{ijk} = \sum_{f=1}^{F} a_{if} b_{jf} c_{kf} + e_{ijk}$$

The criterion:

$$\min_{a_{if},b_{jf},c_{kf}} = \|x_{ijk} - \sum_{f=1}^{r} a_{if}b_{jf}c_{kf}\|^2$$

F

Rosipal et al.

イロン イロン イヨン イヨン

크

Tucker model - scheme

Rosipal et al.

BCI-Neurorehabilitation

ortogonality

- → simplification of calculations
- → BUT in EEG has no neurophysiological interpretation

2 non-negativity

- $\rightarrow \,$ tensor $\mathbb X$ is formed by the non-negative spectrum
- $ightarrow \,$ time, space and frequency scores; tensor ${\mathbb G}$

unimodality

- $\rightarrow\,$ freq. score $\rightarrow\,$ the factor characterizes one frequency
- $\rightarrow~$ spatial score \rightarrow radial EEG sources

4 bimodality

 \rightarrow spatial score \rightarrow tangential EEG sources

Time Scores - posterior α example

Commit des valide et l'orandres : Biological Psychology ILINITA aurel homage une reservationnelle

Tensor decomposition of human narrowband oscillatory brain activity in frequency, space and time Bonan Rospit ^{11/2}, Zeana Robblord I, Leoneto Jose Trajo¹

Rosipal et al.

<ロト <回ト < 回ト < 回ト :

Mirror-Box & BCI-VR Neurorehabilitation Training

A (1) > A (1) > A

Step1: Train with Mirror-Box

Step 2: Extract PARAFAC Atoms

Step 3: Train in VR

イロト イヨト イヨト イ

-

ERD - Start Motor Imagery (MI)

sub 207, 84 yrs. old male, left-hand hemiplegia

Rosipal et al.

BCI-Neurorehabilitation

Sub 201, 66 yrs. old male right-hand hemiplegia

Sub 207, 84 yrs. old male left-hand hemiplegia

Sub 201, 66 yrs. old male, right-hand hemiplegia

After 10 sessions of BCI-VR, there was a small motor skills improvement (the box and block test), but no other significant clinical changes were observed.

Sub 207, 84 yrs. old male, left-hand hemiplegia

The Nine-Hole Peg Test

Date	Left	Right
Prior Mirror Box	78 sec	33 sec
(18.01.2023)		
Prior BCI-VR	66 sec	29 sec
(15.03.2023)		
After 11. sessions of BCI-VR	45 sec	30 sec
(15.06.2023)		

The Box and Block Test

Date	Left	Right
Prior Mirror Box	18 per min	32 per min
(18.01.2023)		
Prior BCI-VR	25 per min	37 per min
(15.03.2023)		
After 11. sessions of BCI-VR	26 per min	38 per min
(15.06.2023)		

There was an improvement of motor skills in the wrist and fingers, it was also confirmed by goniometric examination.

イロン イ理 とく ヨン イヨン

Thank you!

イロン イロン イヨン イヨン

크