Three-way Analysis of Multichannel EEG Data Using the PARAFAC and Tucker Models

Zuzana Rošťáková, Roman Rosipal

Institute of Measurement Science Slovak Academy of Sciences

MEASUREMENT 2019

Zuzana Rošťáková, Roman Rosipal

PARAFAC and Tucker Models

MEASUREMENT 2019

Electroencephalogram – EEG

Zuzana Rošťáková, Roman Rosipal

PARAFAC and Tucker Models

MEASUREMENT 2019

- $\theta \in [4, 6.5]$ Hz
- $\mu \in [7, 8.5]$ Hz
- $\alpha \in [9, 11.5]$ Hz
- $SMR \in [12, 14.5]$ Hz
- $\beta \in [15, 20]$ Hz

- $\theta \in [4, 6.5]$ Hz
- $\mu \in [7, 8.5]$ Hz
- $\alpha \in [9, 11.5]$ Hz
- $SMR \in [12, 14.5]$ Hz
- $\beta \in [15, 20]$ Hz

1. EEG recording

Scalp EEG

and a state of the second an and the second s mound and the second second and the second an and the second second the second second second second mound and the second of the second of the second se many and a start of the second monormal and a survey of the particular shall the particular and mention and an and the man many and a star and the start a mension manuscream many many many many and the and a second and a second and a second s mound and and prover and the second of the second second and the all the second se 4 2 3 5 6 8 9

Time (s)

Zuzana Rošťáková, Roman Rosipal

- $\theta \in [4, 6.5]$ Hz
- $\mu \in [7, 8.5]$ Hz
- α ∈ [9, 11.5] Hz
- $SMR \in [12, 14.5]$ Hz
- $\beta \in [15, 20]$ Hz

1. EEG recording

2. Spectral analysis

Scalp EEG

- $\theta \in [4, 6.5]$ Hz
- $\mu \in [7, 8.5]$ Hz
- α ∈ [9, 11.5] Hz
- $SMR \in [12, 14.5]$ Hz
- $\beta \in [15, 20]$ Hz

1. EEG recording

2. Spectral analysis

3. Atomic decomposition

Zuzana Rošťáková, Roman Rosipal

PARAFAC and Tucker Models

MEASUREMENT 2019

1. EEG recording and preprocessing

- 58–year–old men
- ischemic stroke 2 years before the study; right-hand hemiplegia
- 11 days/sessions of the mirror-box therapy

- EEG preprocessing:
 - artefact detection
 - 2-second-long time segments, overlapping period 250ms

http://www.fieldtriptoolbox.org/faq/capmapping/

PARAFAC and Tucker Models

• Irregular-Resampling Auto-Spectral Analysis (IRASA)

[Wen and Liu, 2016]

• Irregular-Resampling Auto-Spectral Analysis (IRASA)

[Wen and Liu, 2016]

Irregular–Resampling Auto–Spectral Analysis (IRASA)

[Wen and Liu, 2016]

• Irregular-Resampling Auto-Spectral Analysis (IRASA)

[Wen and Liu, 2016]

3. Atomic decomposition

• goal: to detect hidden sources of neural activity

3. Atomic decomposition

- goal: to detect hidden sources of neural activity
- \Rightarrow to detect "atoms", which are represented by their
 - time scores time periods, when the atom was active
 - space scores location of the "atom" on the scalp
 - frequency scores frequency typical for the "atom"

• Parallel Factor Analysis

[Harshman, 1970, Carroll and Chang, 1970]

Tucker model

[Tucker, 1966, Kroonenberg, 1983]

PARAllel FACtor Analysis (PARAFAC)

 \rightarrow restrictions: nonnegativity; unimodality of columns in C

 \rightarrow uniqueness: unique solution under very mild conditions

Zuzana Rošťáková, Roman Rosipal

PARAFAC and Tucker Models

Tucker model

 \rightarrow restrictions: nonnegativity; unimodality of columns in C

 \rightarrow uniqueness: the solution is **not** unique \rightarrow rotation freedom

PARAFAC and Tucker Models

Tucker model - version with restricted G^*

 \rightarrow restrictions: nonnegativity; unimodality of columns in C; diagonal lateral slices of G^{\star}

 \rightarrow uniqueness: A^*, C^* are unique; B^* can be rotated

Model comparison – criteria

- visual and physiological interpretation
- proportion of variance explained

$$VarExpl = 100 \times \left(1 - \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \left(X_{ijk} - \hat{X}_{ijk}\right)^{2}}{\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} X_{ijk}^{2}}\right)$$

• core consistency diagnostics [Bro and Kiers, 2003]

$$CorConDiag = 100 \times \left(1 - \frac{\sum_{m=1}^{F} \sum_{n=1}^{F} \sum_{o=1}^{F} (g_{mno} - g_{mno}^{\star})^{2}}{g_{mno}^{\star}^{2}}\right) \in (-\infty, 100]$$

estimate A, B, C and G in PARAFAC/restricted Tucker model
estimate G* in unrestricted Tucker model with A, B, C from step 1

Number of components

- **PARAFAC**: F = 6
- Tucker model: M = 6, N = 2

Results

Results

PARAFAC – 4th day

PARAFAC – average of 11 days

Tucker model – average of 11 days

- comparison of PARAFAC and the Tucker model
 - successful extraction of the sensori-motor oscillatory rhythms
 - meaningful neurophysiological interpretation of the results
 - the models yielded similar results in terms of
 - mean squared error, proportion of variance explained
 - time and frequency components
 - the Tucker model overcomes PARAFAC in
 - the CorConDiag values
 - the lower number of frequency components needed to describe the same amount of the data variability
 - further validation of the result by using higher density EEG recordings

Literature

Bro, R. and Kiers, H. A. L. (2003).

A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics, 17(5):274-286.

Carroll, J. D. and Chang, J.-J. (1970).

Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition.

Psychometrika, 35(3):283-319.

Harshman, R. A. (1970).

Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multimodal factor analysis.

UCLA Working Papers in Phonetics, 16(1).

Kroonenberg, P. M. (1983).

Three-Mode Principal Component Analysis: Theory and Applications. DSWO Press, Leiden.

Tucker, L. R. (1966).

Some mathematical notes on three-mode factor analysis. *Psychometrika*, 31(3):279-311.

Wen, H. and Liu, Z. (2016).

Separating fractal and oscillatory components in the power spectrum of neurophysiological signal. Brain Topography, 29(1):13-26.