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Electroencephalogram � EEG
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Mirror-box therapy

medical engineering), with the sampling rate of 512 Hz, band-pass
0.1–200 Hz, and notch filtering at 50 Hz, served to record all EEG
signals. We digitized and stored all EEG signals on hard disk drives
of a computer equipped with g.Recorder software (g.tec medical
engineering) and archived all the data on a network-attached storage
system.

EEG Data Analysis

We performed initial analyses using BrainVision Analyzer 2 soft-
ware (BVA2; Brain Products). This involved the following steps:
down sample signals to 128 Hz, apply automatic artifact detection
with criteria of maximal allowed voltage step 50 !V/ms, lowest
allowed activity in intervals of 100 ms set to 0.5 !V, and maximal
allowed difference of voltages in intervals of 20 ms set to 50 !V. If
any of the first two criteria were met, the interval preceding and
following the detected artifact by 150 ms was marked as bad. It the
case of the third criterion, this interval was set to ! 50 ms. Next, a

trained technician applied a careful manual inspection of the data and
detected artifacts, also using the BVA2 software. The technician
manually marked periods with undetected artifacts and removed
artifact markers wrongly assigned automatically. This included detec-
tion and removal of ocular artifacts.

Next, we analyzed the EEG data using custom MATLAB scripts
(The MathWorks). We first segmented EEG recordings into 2- or 4-s
long overlapping segments (87.5% overlap) and zero-centered each
segment by subtracting the mean segment voltage from each sample.
We rejected any segment containing artifacts. After this procedure, for
"2-min-long resting state blocks, we retained, on average, 56 (94%)
nonoverlapping 2-s segments and 26 (90%) 4-s segments. Segments
of different lengths were analyzed as follows:

For the 2-s long segments, we used fast Fourier transforms with a
Hanning window and the number of fast Fourier transforms points
equal to the number of points in the segment to compute power
spectrum densities (PSD) in the range of 0–64 Hz. We then analyzed

Fig. 2. Top: schema of the experimental protocol. Resting state blocks with eyes closed (EC) and eyes open (EO) are followed by the 2 mirror box training blocks
that differ only in the instruction for the subject during the self-execution of a movement. The session is closed by repeating the resting state block. For details,
see the text. Bottom: subject performing the mirror therapy training. VLH, visual left hand; VBH, visual both hands.
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3. Atomic decomposition
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1. EEG recording and preprocessing

58�year�old men

ischemic stroke 2 years before the study; right�hand hemiplegia

11 days/sessions of the mirror�box therapy

EEG preprocessing:

artefact detection

2�second�long time segments,
overlapping period 250ms

http://www.�eldtriptoolbox.org/faq/capmapping/
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2. Spectral analysis

Irregular�Resampling Auto�Spectral Analysis (IRASA)
[Wen and Liu, 2016]

separation of fractal and oscillatory components in the power spectrum
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separation of fractal and oscillatory components in the power spectrum
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2. Spectral analysis

Irregular�Resampling Auto�Spectral Analysis (IRASA)
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separation of fractal and oscillatory components in the power spectrum
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2. Spectral analysis

Irregular�Resampling Auto�Spectral Analysis (IRASA)
[Wen and Liu, 2016]

separation of fractal and oscillatory components in the power spectrum

5 10 15 20 25

Hz

0

500

1000

1500

 p
o

w
e

r

oscillatory

X: 5

Y: 720.7

X: 10.5

Y: 219.9

Zuzana Ro²´áková, Roman Rosipal PARAFAC and Tucker Models MEASUREMENT 2019



3. Atomic decomposition

goal: to detect hidden sources of neural activity
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3. Atomic decomposition

goal: to detect hidden sources of neural activity

⇒ to detect �atoms�, which are represented by their

time scores � time periods, when the atom was active
space scores � location of the �atom� on the scalp
frequency scores � frequency typical for the �atom�
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3. Atomic decomposition � methods

Parallel Factor Analysis

[Harshman, 1970, Carroll and Chang, 1970]

Tucker model

[Tucker, 1966, Kroonenberg, 1983]
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PARAllel FACtor Analysis (PARAFAC)

X ∈ RI×J×K : Xijk =
F∑

f =1

gfff aif bjf ckf + eijk ,

‖af ‖ = ‖bf ‖ = ‖cf ‖ = 1

BT	
	

  
 
 
                   K x F 
        

                                                                                C	
 
         
 
 

   =                           F x F x F                F x J           + 
   
 
      
        I x J x K                          I x F               I x J x K 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

X	 G	A	 E	

→ restrictions: nonnegativity; unimodality of columns in C

→ uniqueness: unique solution under very mild conditions
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Tucker model

X ∈ RI×J×K : Xijk =
M∑

m=1

N∑
n=1

O∑
o=1

g?
mnoa

?
imb

?
jnc

?
ko + e?ijk ,

‖am‖ = ‖bn‖ = ‖co‖ = 1

X	 A*	

	

  
 
 
                   K x O 
        

                                                                              C* 
 
         
 
 
 

                            =                          M x N x O                   N x J         + 
   
 
 
 I x J x K                           I x M              I x J x K 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

G*	 B*T	
E*	

→ restrictions: nonnegativity; unimodality of columns in C

→ uniqueness: the solution is not unique → rotation freedom
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Tucker model - version with restricted G ?

X ∈ RI×J×K : Xijk =
M∑

m=1

N∑
n=1

g?
mnma

?
imb

?
jnc

?
km + e?ijk ,

‖am‖ = ‖bn‖ = ‖cm‖ = 1  
 
 
             K x M 
 
 
 
 
         
 
 
 

 =                            M x N x M                   J x N       + 
   
 
 
 
    I x J x K                          I x M               I x J x K 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

X	
G*	

A*	
B*	

E*	

C*	

→ restrictions: nonnegativity; unimodality of columns in C; diagonal lateral
slices of G?

→ uniqueness: A?,C? are unique; B? can be rotated
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Model comparison � criteria

visual and physiological interpretation

proportion of variance explained

VarExpl = 100×

1−

∑I
i=1

∑J
j=1

∑K
k=1

(
Xijk − X̂ijk

)2
∑I

i=1

∑J
j=1

∑K
k=1

X 2

ijk


core consistency diagnostics [Bro and Kiers, 2003]

CorConDiag = 100×

1−

F∑
m=1

F∑
n=1

F∑
o=1

(gmno − g?
mno)

2

g?
mno

2

 ∈ (−∞, 100]

1 estimate A,B,C and G in PARAFAC/restricted Tucker model
2 estimate G? in unrestricted Tucker model with A,B,C from step 1
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Number of components

PARAFAC: F = 6

Tucker model: M = 6, N = 2
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Results
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PARAFAC � 4
th day
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Tucker model � 4
th day

2 4 6
time (min.)

0

0.05

0.1

tim
e 

sc
or

es

Theta

5 10 15 20 25
frequency (Hz)

0

0.5

fr
eq

ue
nc

y 
sc

or
es

2 4 6
time (min.)

Mu

5 10 15 20 25
frequency (Hz)

2 4 6
time (min.)

Alpha

5 10 15 20 25
frequency (Hz)

2 4 6
time (min.)

SMR

5 10 15 20 25
frequency (Hz)

2 4 6
time (min.)

Beta1

5 10 15 20 25
frequency (Hz)

2 4 6
time (min.)

Beta2

5 10 15 20 25
frequency (Hz)

Zuzana Ro²´áková, Roman Rosipal PARAFAC and Tucker Models MEASUREMENT 2019



Tucker model � 4
th day

2 4 6
time (min.)

0

0.05

0.1

tim
e 

sc
or

es

Theta

5 10 15 20 25
frequency (Hz)

0

0.5

fr
eq

ue
nc

y 
sc

or
es

2 4 6
time (min.)

Mu

5 10 15 20 25
frequency (Hz)

2 4 6
time (min.)

Alpha

5 10 15 20 25
frequency (Hz)

2 4 6
time (min.)

SMR

5 10 15 20 25
frequency (Hz)

2 4 6
time (min.)

Beta1

5 10 15 20 25
frequency (Hz)

2 4 6
time (min.)

Beta2

5 10 15 20 25
frequency (Hz)

FC
3

C
1

C
3

C
5

C
P3 FC

4
C

2
C

4
C

6
C

P4

0

0.5

sp
ac

e 
sc

or
es

component 1

-Left          +Right

sp
ac

e 
sc

or
es

0.1

0.2

0.3

0.4

FC
3

C
1

C
3

C
5

C
P3 FC

4
C

2
C

4
C

6
C

P4

component 2

0.1

0.2

0.3

0.4

Zuzana Ro²´áková, Roman Rosipal PARAFAC and Tucker Models MEASUREMENT 2019



Tucker model � 4
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Tucker model � 4
th day
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PARAFAC � average of 11 days
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Tucker model � average of 11 days
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Conclusion

comparison of PARAFAC and the Tucker model

successful extraction of the sensori�motor oscillatory rhythms

meaningful neurophysiological interpretation of the results

the models yielded similar results in terms of

mean squared error, proportion of variance explained

time and frequency components

the Tucker model overcomes PARAFAC in

the CorConDiag values

the lower number of frequency components needed to describe the

same amount of the data variability

further validation of the result by using higher density EEG recordings
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