Three-way Analysis of Multichannel EEG Data Using the PARAFAC and Tucker Models

Zuzana Roštáková, Roman Rosipal

Institute of Measurement Science Slovak Academy of Sciences

MEASUREMENT 2019

Electroencephalogram - EEG

Mirror-box therapy

- $\theta \in[4,6.5] \mathrm{Hz}$
- $\mu \in[7,8.5] \mathrm{Hz}$
- $\alpha \in[9,11.5] \mathrm{Hz}$
- $S M R \in[12,14.5] \mathrm{Hz}$
- $\beta \in[15,20] \mathrm{Hz}$

Mirror-box therapy

- $\theta \in[4,6.5] \mathrm{Hz}$
- $\mu \in[7,8.5] \mathrm{Hz}$
- $\alpha \in[9,11.5] \mathrm{Hz}$
- $S M R \in[12,14.5] \mathrm{Hz}$
- $\beta \in[15,20] \mathrm{Hz}$

1. EEG recording

Mirror-box therapy

- $\theta \in[4,6.5] \mathrm{Hz}$
- $\mu \in[7,8.5] \mathrm{Hz}$
- $\alpha \in[9,11.5] \mathrm{Hz}$
- $S M R \in[12,14.5] \mathrm{Hz}$
- $\beta \in[15,20] \mathrm{Hz}$

1. EEG recording 2. Spectral analysis

Mirror-box therapy

- $\theta \in[4,6.5] \mathrm{Hz}$
- $\mu \in[7,8.5] \mathrm{Hz}$
- $\alpha \in[9,11.5] \mathrm{Hz}$
- $S M R \in[12,14.5] \mathrm{Hz}$
- $\beta \in[15,20] \mathrm{Hz}$

1. EEG recording

2. Atomic decomposition

1. EEG recording and preprocessing

- 58-year-old men
- ischemic stroke 2 years before the study; right-hand hemiplegia
- 11 days/sessions of the mirror-box therapy
- EEG preprocessing:
- artefact detection
- 2-second-long time segments, overlapping period 250 ms

http://www.fieldtriptoolbox.org/faq/capmapping/

2. Spectral analysis

- Irregular-Resampling Auto-Spectral Analysis (IRASA)
[Wen and Liu, 2016]
- separation of fractal and oscillatory components in the power spectrum

2. Spectral analysis

- Irregular-Resampling Auto-Spectral Analysis (IRASA)
[Wen and Liu, 2016]
- separation of fractal and oscillatory components in the power spectrum

2. Spectral analysis

- Irregular-Resampling Auto-Spectral Analysis (IRASA)
[Wen and Liu, 2016]
- separation of fractal and oscillatory components in the power spectrum

2. Spectral analysis

- Irregular-Resampling Auto-Spectral Analysis (IRASA)
[Wen and Liu, 2016]
- separation of fractal and oscillatory components in the power spectrum

3. Atomic decomposition

- goal: to detect hidden sources of neural activity

3. Atomic decomposition

- goal: to detect hidden sources of neural activity
\Rightarrow to detect "atoms", which are represented by their
- time scores - time periods, when the atom was active
- space scores - location of the "atom" on the scalp
- frequency scores - frequency typical for the "atom"

3. Atomic decomposition - methods

- Parallel Factor Analysis
[Harshman, 1970, Carroll and Chang, 1970]
- Tucker model
[Tucker, 1966, Kroonenberg, 1983]

PARAllel FACtor Analysis (PARAFAC)

$$
\begin{gathered}
X \in \mathbb{R}^{\mathbb{I} \times \mathbb{J} \times \mathbb{K}}: \quad X_{i j k}=\sum_{f=1}^{F} g_{f f f} a_{i f} b_{j f} c_{k f}+e_{i j k}, \\
\left\|a_{f}\right\|=\left\|b_{f}\right\|=\left\|c_{f}\right\|=1 \\
\mathrm{KXFF}
\end{gathered}
$$

I x J x K
I x F
\rightarrow restrictions: nonnegativity; unimodality of columns in C
\rightarrow uniqueness: unique solution under very mild conditions

Tucker model

$$
\begin{aligned}
& X \in \mathbb{R}^{\mathbb{I} \times \mathbb{J} \times \mathbb{K}}: \quad X_{i j k}=\sum_{m=1}^{M} \sum_{n=1}^{N} \sum_{o=1}^{O} g_{m n o}^{\star} a_{i m}^{\star} b_{j n}^{\star} c_{k o}^{\star}+e_{i j k}^{\star}, \\
& \left\|a_{m}\right\|=\left\|b_{n}\right\|=\left\|c_{o}\right\|=1
\end{aligned}
$$

\rightarrow restrictions: nonnegativity; unimodality of columns in C
\rightarrow uniqueness: the solution is not unique \rightarrow rotation freedom

Tucker model - version with restricted G^{\star}

$$
\begin{aligned}
& X \in \mathbb{R}^{\mathbb{I} \times \mathbb{J} \times \mathbb{K}}: \quad X_{i j k}=\sum_{m=1}^{M} \sum_{n=1}^{N} g_{m n m}^{\star} a_{i m}^{\star} b_{j n}^{\star} c_{k m}^{\star}+e_{i j k}^{\star}, \\
& \left\|a_{m}\right\|=\left\|b_{n}\right\|=\left\|c_{m}\right\|=1 \\
& \text { KxM } \\
& \text { C* } \\
& \text { I } \mathrm{XJxK} \\
& \text { I x M }
\end{aligned}
$$

\rightarrow restrictions: nonnegativity; unimodality of columns in C ; diagonal lateral slices of G^{\star}
\rightarrow uniqueness: A^{\star}, C^{\star} are unique; B^{\star} can be rotated

Model comparison - criteria

- visual and physiological interpretation
- proportion of variance explained

$$
\operatorname{VarExpl}=100 \times\left(1-\frac{\sum_{i=1}^{l} \sum_{j=1}^{J} \sum_{k=1}^{K}\left(X_{i j k}-\widehat{X}_{i j k}\right)^{2}}{\sum_{i=1}^{l} \sum_{j=1}^{J} \sum_{k=1}^{K} X_{i j k}^{2}}\right)
$$

- core consistency diagnostics [Bro and Kiers, 2003]

$$
\operatorname{CorConDiag}=100 \times\left(1-\frac{\sum_{m=1}^{F} \sum_{n=1}^{F} \sum_{o=1}^{F}\left(g_{m n o}-g_{m n o}^{\star}\right)^{2}}{g_{m n o}^{\star}{ }^{2}}\right) \in(-\infty, 100]
$$

(1) estimate A, B, C and G in PARAFAC/restricted Tucker model
(2) estimate G^{\star} in unrestricted Tucker model with A, B, C from step 1

Number of components

- PARAFAC: $\quad F=6$
- Tucker model: $M=6, N=2$

Tucker model

Results

Results

PARAFAC $-4^{\text {th }}$ day

Tucker model $-4^{\text {th }}$ day

	Theta	Mu	Alpha	SMR	Beta 1	Beta2
O ¢ E	${ }^{0.05} \text { WHWWHPNW }$					
	${ }_{\text {time }}^{2} \text { (min.) }^{4}{ }^{6}$	$\left.{ }_{\text {time }}^{2} \min .\right)^{6}$	$\left.{ }_{\text {time }}^{2} \mathrm{~min} .\right)^{6}{ }^{6}$	${ }^{2}{\underset{\text { time }}{ }(\min .)}^{6}$	${ }_{\text {time }(\min .)}{ }^{2}$	$\left.{ }_{\text {time }}^{2} \mathrm{~min} .\right)^{4}{ }^{6}$
$$						
W0 0 	 component 1	 component 2	$G_{.2 .}=\left(\begin{array}{c} 0.79 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	$\begin{array}{cc}0 & 0 \\ \mathbf{1 . 8 0} & 0 \\ 0 & 0.48 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$	$\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0.05 & 0 \\ 0 & 2.20 \\ 0 & 0\end{array}$	$\left.\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.97\end{array}\right) \times 10^{3}$
	-Left +Ri					

PARAFAC - average of 11 days

Tucker model - average of 11 days

Conclusion

- comparison of PARAFAC and the Tucker model
- successful extraction of the sensori-motor oscillatory rhythms
- meaningful neurophysiological interpretation of the results
- the models yielded similar results in terms of
- mean squared error, proportion of variance explained
- time and frequency components
- the Tucker model overcomes PARAFAC in
- the CorConDiag values
- the lower number of frequency components needed to describe the same amount of the data variability
- further validation of the result by using higher density EEG recordings

Literature

Bro, R. and Kiers, H. A. L. (2003).
A new efficient method for determining the number of components in PARAFAC models.
Journal of Chemometrics, 17(5):274-286.
Carroll, J. D. and Chang, J.-J. (1970).
Analysis of individual differences in multidimensional scaling via an N -way generalization of "Eckart-Young" decomposition.
Psychometrika, 35 (3):283-319.
Harshman, R. A. (1970).
Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multimodal factor analysis.
UCLA Working Papers in Phonetics, 16(1).
Kroonenberg, P. M. (1983).
Three-Mode Principal Component Analysis: Theory and Applications.
DSWO Press, Leiden.
Tucker, L. R. (1966).
Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279-311.
Wen, H. and Liu, Z. (2016).
Separating fractal and oscillatory components in the power spectrum of neurophysiological signal.
Brain Topography, 29(1):13-26.

