

Kernel PLS-SVC for Linear and Nonlinear Classification

Roman Rosipal^{1,3}, Leonard J. Trejo¹, Bryan Matthews²

¹NASA Ames Research Center,
Computational Sciences Division, Moffett Field, CA
²QSS Group Inc., NASA Ames Research Center,
Computational Sciences Division, Moffett Field, CA
³Department of Theoretical Methods
Slovak Academy of Sciences, Bratislava, Slovak Republic

Outline

- 1. Introduction to PLS
- 2. PLS and Kernel PLS Discrimination (relation to CCA and Fisher's LDA)
- 3. Experimental Results

Partial Least Squares

- PLS a class of techniques for modeling relations between blocks of observed variables by means of latent variables
- Herman Wold ('66,'81) NIPALS to linearize models nonlinear in the parameters
- Svante Wold et. al ('83) extended PLS for the overdetermined regression problems
- Chemometrics strong latent variable structure

Partial Least Squares

• data sets:

 $\mathbf{X} \ (n_{objects} \times N_{variables}) \\ \mathbf{Y} \ (n_{objects} \times M_{responses}) \\ - zero-mean$

• bilinear decomposition:

 $\mathbf{X} = \mathbf{T}\mathbf{P}^T + \mathbf{E}$ $\mathbf{Y} = \mathbf{U}\mathbf{Q}^T + \mathbf{F}$

where:

 \mathbf{T}, \mathbf{U} matrix of score variables (LV, components)

 \mathbf{P},\mathbf{Q} matrix of loadings

 \mathbf{E},\mathbf{F} matrix of residuals (errors)

• PLS - bilinear decomposition of X and Y maximizing covariance between score vectors $\mathbf{t} = \mathbf{X}\mathbf{w}$ and $\mathbf{u} = \mathbf{Y}\mathbf{c}$

$$\begin{aligned} \max_{|\mathbf{r}|=|\mathbf{s}|=1} [cov(\mathbf{Xr}, \mathbf{Ys})]^2 &= [cov(\mathbf{Xw}, \mathbf{Yc})]^2 \\ &= var(\mathbf{Xw}) [corr(\mathbf{Xw}, \mathbf{Yc})]^2 var(\mathbf{Yc}) \\ &= [cov(\mathbf{t}, \mathbf{u})]^2 \end{aligned}$$

•
$$\mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{X} \mathbf{w} = \lambda \mathbf{w}$$
$$\mathbf{X} \mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{t} = \lambda \mathbf{t}$$
$$\mathbf{u} = \mathbf{Y} \mathbf{Y}^T \mathbf{t}$$

•
$$\mathbf{p} = \mathbf{X}^T \mathbf{t} / (\mathbf{t}^T \mathbf{t})$$
; $\mathbf{q} = \mathbf{Y}^T \mathbf{u} / (\mathbf{u}^T \mathbf{u})$

• deflation schemes define different forms of PLS

Forms of Partial Least Squares

• PLS1, PLS2: rank-one approximation on ${\bf X}, {\bf Y}$ with t ${\bf X} \to {\bf X} - {\bf t} {\bf p}^T \ ; \ {\bf Y} \to {\bf Y} - {\bf t} {\bf c}^T$

mutually orthogonal components \mathbf{t}_i , $i = 1, \ldots, p$

• PLS-SB: SVD on
$$\mathbf{Y}^T \mathbf{X}$$

mutually orthogonal weight vectors $\mathbf{w}_i, \mathbf{c}_i$ generally not orthogonal \mathbf{t}_i and \mathbf{u}_i

• 1st $SV_{i+1} \ge 2nd SV_i \rightarrow we$ select one component at a time

Partial Least Squares Discrimination

• orthonormalized PLS

$$\tilde{\mathbf{Y}} = \mathbf{Y} (\mathbf{Y}^T \mathbf{Y})^{-1/2}$$
$$\tilde{\mathbf{Y}}^T \tilde{\mathbf{Y}} = \mathbf{I}$$

Orthonormalized PLS vs. CCA, Fisher's LDA [Barker & Rayens 2003]

• orthonormalized PLS $\max_{|\mathbf{r}|=|\mathbf{s}|=1} [cov(\mathbf{Xr}, \tilde{\mathbf{Ys}})]^2 = var(\mathbf{Xw}) [corr(\mathbf{Xw}, \tilde{\mathbf{Yc}})]^2$ $\mathbf{X}^T \tilde{\mathbf{Y}} \tilde{\mathbf{Y}}^T \mathbf{Xw} = \lambda \mathbf{w}$ $\mathbf{X}^T \mathbf{Y} (\mathbf{Y}^T \mathbf{Y})^{-1} \mathbf{Y}^T \mathbf{Xw} = \lambda \mathbf{w}$

$$\mathbf{H}\mathbf{w} = \lambda \mathbf{w}$$

• CCA, Fisher's LDA $\max_{|\mathbf{r}|=|\mathbf{s}|=1} [corr(\mathbf{Xr}, \mathbf{Ys})]^2 = [corr(\mathbf{Xa}, \mathbf{Yb})]^2$

$$(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} (\mathbf{Y}^T \mathbf{Y})^{-1} \mathbf{Y}^T \mathbf{X} \mathbf{a} = \lambda \mathbf{a}$$
$$\mathbf{E}^{-1} \mathbf{H} \mathbf{a} = \frac{\lambda}{1-\lambda} \mathbf{a}$$

Kernel PLS Discrimination

- linear PLS discrimination in a feature space ${\cal F}$
- nonlinear kernel-based PLS:

$$\begin{aligned} \mathbf{X} \mathbf{X}^T \mathbf{Y} \mathbf{Y}^T \mathbf{t} &= \lambda \mathbf{t} \\ \mathbf{u} &= \mathbf{Y} \mathbf{Y}^T \mathbf{t} \end{aligned} \Rightarrow$$

$$\mathbf{K}\mathbf{Y}\mathbf{Y}^{T}\mathbf{t} = \lambda\mathbf{t}$$
$$\mathbf{u} = \mathbf{Y}\mathbf{Y}^{T}\mathbf{t}$$

• nonlinear kernel-based orthonormalized PLS:

$$\begin{split} \mathbf{K}\mathbf{Y}(\mathbf{Y}^T\mathbf{Y})^{-1}\mathbf{Y}^T\mathbf{t} &= \mathbf{K}\tilde{\mathbf{Y}}\tilde{\mathbf{Y}}^T\mathbf{t} = \lambda\mathbf{t}\\ \tilde{\mathbf{Y}} &= \mathbf{Y}(\mathbf{Y}^T\mathbf{Y})^{-1/2} \end{split}$$

Kernel PLS-SVC Classification

- orthonormalized kernel PLS + SVC (KPLS-SVC)
- orthonormalized kernel PLS can be combined with other existing classifiers (e.g. LDA, logistic regression)

Experiments:

- 13 benchmark data sets of two-class classification problem http://www.first.gmd.de/~raetsch
- vowel sounds data set multi-class problem (11 classes)
- classification of finger movement periods from non-movement periods based on electroencephalograms (EEG)

Data Set	KFD	C-SVC	KPLS-SVC
Banana	$10.8{\pm}0.5$	$11.5{\pm}0.5$	$10.5{\pm}0.4$
B.Cancer	25.8±4.6	26.0±4.7	25.1±4.5*
Diabetes	23.2±1.6	$23.5 {\pm} 1.7$	23.0±1.7
German	23.7±2.2	$23.6{\pm}2.1$	23.5±1.6
Heart	16.1±3.4	$16.0{\pm}3.3$	16.5 ± 3.6
Image	4.76±0.58	$2.96{\pm}0.60$	$3.03{\pm}0.61$
Ringnorm	$1.49 {\pm} 0.12$	$1.66{\pm}0.12$	$1.43{\pm}0.10$
F.Solar	33.2±1.7	32.4±1.8	32.4±1.8
Splice	$10.5{\pm}0.6$	$10.9{\pm}0.7$	$10.9{\pm}0.8$
Thyroid	4.20±2.07	4.80±2.19	4.39±2.10
Titanic	23.2±2.06	22.4±1.0	22.4±1.1*
Twonorm	$2.61{\pm}0.15$	$2.96{\pm}0.23$	$\textbf{2.34}{\pm}\textbf{0.11}$
Waveform	9.86±0.44	9.88±0.43	$9.58{\pm}0.36$

Method	Training Error	Testing Error
LDA	0.32	0.56
SVC (linear) - 1vs1	0.19	0.51
KPLS-SVC (linear) - 1vs1	0.16	0.47
FDA/MARS (df=2)	0.02	0.42
FDA/MARS (df=6,red. dim.)	0.13	0.39
SVC (gauss) - 1vs1	0.01	0.37
KPLS-SVC (gauss) - 1vs1	0.01	0.35
SVC (gauss, w \leq 5) - 1vs1	0.002	0.29
KPLS-SVC (gauss, w \leq 5) - 1vs1	0.002	0.33

Finger movement periods vs. non-movement periods

PLS-derived Spatio-temporal Filter - 01/09/2003

Conclusions

- PLS discrimination useful method for dimensionality reduction, visualization
- PLS discrimination preferred over PCA
- nonlinear kernel-based version of PLS discrimination provided
- KPLS-SVC achieved good results on the used data sets

