Application of Multi-way EEG Decomposition for Cognitive Workload Monitoring

Roman Rosipal^{1,2}, Leonard J. Trejo², Paul L. Nunez²

¹Department of Medical Cybernetics and Artificial Intelligence Center for Brain Research Medical University Vienna

> ²Pacific Development and Technology, LLC Palo Alto, CA

PLS 2009, September, 4.-7., Beijing

Overview

Introduction

- Why cognitive workload monitoring?
- Experiments

2 Methods

- Data recording & pre-processing
- PARAFAC model
- 3 Experimental results
 - Data set I
 - Data set II

Introduction ● ○	Methods 0000	Experimental results	Conclu

Why cognitive workload monitoring?

• Critical safety, high workload demanding, etc. environments

Experimental results

Experiments

• Uninhabited Air Vehicle (UAV) control

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Experimental results

Experiments

• Uninhabited Air Vehicle (UAV) control

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Trained subjects were monitoring several UAVs as they flew a preplanned mission; processing SAR images (synthetic aperture radar), vehicle health control, etc.

Experimental results

Experiments

• Uninhabited Air Vehicle (UAV) control

- Trained subjects were monitoring several UAVs as they flew a preplanned mission; processing SAR images (synthetic aperture radar), vehicle health control, etc.
- Different task conditions were used to control mental workload levels

Introc	luction
00	

Data recording

• EEG recording:

Introd	luction
00	

э

Data recording

• EEG recording:

Normal EEG example:

Kample:

Introduction OO	Methods ○●○○	Experimental results	Conclusions
Data pre-processing			

• Data were segmented into 2 sec long epochs

Introduction	Methods	Experimental results	Conclusions
00	0000	000000000	
Data pre-processing			

- Data were segmented into 2 sec long epochs
- Spectral representation: Thompson multitaper estimate of the power spectrum density; that is the distribution of power per unit frequency

$$P_{xx}(f) = F_x(f)F_x^*(f)$$

(ロ) (同) (三) (三) (三) (○) (○)

where $F_x(f)$ is the Fourier transform of the signal x and * indicates the complex conjugate

Introduction OO	Methods O●OO	Experimental results	Conclusions
Data pre-processing			

- Data were segmented into 2 sec long epochs
- Spectral representation: Thompson multitaper estimate of the power spectrum density; that is the distribution of power per unit frequency

Introduction OO	Methods ○O●○	Experimental results	Conclusions
Data pre-processing			

• Coherence representation: Cross power spectra density $P_{xy}(f)$,

$$P_{xy}(f) = F_x(f)F_y^*(f)$$

or magnituted squared (coherence)

$$C_{xy}(f) = rac{|P_{xy}(f)|^2}{P_{xx}(f)P_{yy}(f)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	Methods	Experimental results	Conclusions
	0000		
Data pre-processing			

• Coherence representation: Cross power spectra density $P_{xy}(f)$,

$$P_{xy}(f) = F_x(f)F_y^*(f)$$

or magnituted squared (coherence)

$$C_{xy}(f) = rac{|P_{xy}(f)|^2}{P_{xx}(f)P_{yy}(f)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Data matrix construction: $\mathbf{X}_{(I \times J \times K)}$

I - time segments

- J electrodes or electrode pairs
- K PSD or CSD (coherences)

Introduction OO	Methods ○○○●	Experimental results	Conclusions
PARAFAC model			

• The PARAFAC model with *F* factors: decomposition of the data matrix **X** using three loading matrices, **A**, **B**, and **C** with elements a_{if} , b_{jf} , and c_{kf}

$$x_{ijk} = \sum_{f=1}^{F} a_{if} b_{jf} c_{kf} + \epsilon_{ijk}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Introduction	Methods	Experimental results	Conclusions
	0000		
PARAEAC model			

 The PARAFAC model with *F* factors: decomposition of the data matrix X using three loading matrices, A, B, and C with elements *a_{if}*, *b_{jf}*, and *c_{kf}*

$$x_{ijk} = \sum_{f=1}^{F} a_{if} b_{jf} c_{kf} + \epsilon_{ijk}$$

• The criterion:

$$\min_{a_{if},b_{jf},c_{kf}} = \|x_{ijk} - \sum_{f=1}^{F} a_{if}b_{jf}c_{kf}\|^2$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction	Methods	Experimental results	Conclusions
		000000000	
PAPAEAC model			

• The PARAFAC model with *F* factors: decomposition of the data matrix **X** using three loading matrices, **A**, **B**, and **C** with elements a_{if} , b_{jf} , and c_{kf}

$$x_{ijk} = \sum_{f=1}^{F} a_{if} b_{jf} c_{kf} + \epsilon_{ijk}$$

• The criterion:

$$\min_{a_{if},b_{jf},c_{kf}} = \|x_{ijk} - \sum_{f=1}^{F} a_{if}b_{jf}c_{kf}\|^2$$

 Software: proprietary m-codes developed by PDT, LLC, and subroutines from the N-way toolbox for Matlab (Andersson and Bro, 2000)

Introduction OO	Methods 0000	Experimental results	Conclusions
Data set I			

Set I: 2 subjects, 5 EEG electrodes (Fz, F7, Pz, T5, O2) Two levels of mental workload (low & high)

Introduction 00	Methods 0000	Experimental results	Conclusions
Data set I			

- Set I: 2 subjects, 5 EEG electrodes (Fz, F7, Pz, T5, O2) Two levels of mental workload (low & high)
- Subject 2:

・ロット (雪) (日) (日)

э.

Introduction OO	Methods 0000	Experimental results	Conclusions
Data set II			

 Set II: 6 subjects, 19 EEG electrodes (10-20 recording system) Two levels of the global workload were defined based on a vehicle health task and an operator vehicle interface task

(日) (日) (日) (日) (日) (日) (日)

Introduction OO	Methods 0000	Experimental results	Conclusions
Data set II			

- Set II: 6 subjects, 19 EEG electrodes (10-20 recording system) Two levels of the global workload were defined based on a vehicle health task and an operator vehicle interface task
- Subject B 19 electrodes

Introduction OO	Methods 0000	Experimental results	Conclusions
Data set II			

• Spatial pattern, Subject B - 19 electrodes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Introduction OO	Methods 0000	Experimental results	Conclusions
Data set II			

• Subject B - reduced set of 12 electrodes

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Introd	uction
00	

Experimental results

Data set II

Subject B - coherence representation

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

Introd	
00	

Experimental results

Data set II

Subject B - coherence representation

We found high loadings in the parieto-ocipital electrode pairs

・ヨー・ヨー・ヨー・
 ・ヨー・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introd	du		0	
00				

Experimental results

Data set II

Subjects E,G,I, K (plotted subject E)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introd	
00	

Experimental results

Data set II

Subjects E - coherence

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Introd	uction
00	

Experimental results

Data set II

Subjects E - coherence

• We found the similar decomposition for subjects B, G, I, K

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction OO	Methods 0000	Experimental results	Conclusions
Data set II			

• Subjects B,E,G,I, K - coherence

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Introd	
00	

Experimental results

Data set II

Subjects C

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Introd	uction
00	

Experimental results

Data set II

• Subjects C

Atom 1 - fronto-central, Atom 3 - centro-parietal

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introd	uction
00	

Experimental results

Data set II

• Subjects C - coherence

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Introd	uction
00	

Experimental results

Data set II

Subjects C - coherence

 Atom 1 - fronto-central located electrode pairs Atom 3 - centro-parietal & parieto-ocipital

Introduction OO	Methods 0000	Experimental results	Conclusions
Conclusions			

Results show that mental workload may be tracked by EEG components isolated using PARAFAC

Introduction OO	Methods 0000	Experimental results	Conclusions
Conclusions			

- Results show that mental workload may be tracked by EEG components isolated using PARAFAC
- On data set II, the workload related atom was remarkably stable in 5 out of the 6 subjects

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction OO	Methods 0000	Experimental results	Conclusions
Conclusions			

- Results show that mental workload may be tracked by EEG components isolated using PARAFAC
- On data set II, the workload related atom was remarkably stable in 5 out of the 6 subjects
- The short-and long range coherence related atoms are more stable across the subjects, provide higher discrimination of the low and high workload levels and seem to be less susceptible to the movement related artifacts

(ロ) (同) (三) (三) (三) (○) (○)

Introduction OO	Methods 0000	Experimental results	Conclusions
Conclusions			

- Results show that mental workload may be tracked by EEG components isolated using PARAFAC
- On data set II, the workload related atom was remarkably stable in 5 out of the 6 subjects
- The short-and long range coherence related atoms are more stable across the subjects, provide higher discrimination of the low and high workload levels and seem to be less susceptible to the movement related artifacts
- We observed similarly promising and remarkable results on additional two data sets monitoring cognitive workload and cognitive fatigue