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Estimation of Cognitive Status
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Useful Definitions

specific
Factors

m Engagement: selection of a task as the focus of attention and
effort

m Workload: significant commitment of attention and effort to task

m Overload: task demands outstrip performance capacity

m Mental Fatigue: desire to withdraw attention and effort from a
task
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Why to Monitor Cognitive Status?

m Critical safety, high workload, stressful, etc., environments
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Experiment 1 - Mental Fatigue Monitoring
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Experiment 2 - Lateralized Attention Network Test (LANT)

* The LANT was developed for
measuring selective attention in
each hemisphere. It includes:

*  Conflict Resolution
*  Spatial Orienting

«  Alerting

*  Inhibition of Return

* The LANT is sensitive to individual

differences
*  InHandedness and in Gender
« In Persondlity. E.g., anxiety,
empathy
* InSocial Relations, e.g.,
«  Sensitivity to discrimination
« Conditions of teamwork
« Performance can be optimized by:
*  Adapting to the complementary
diurnal rhythms of the
attentional networks in the two
hemispheres
« Providing individually
emotionally relevant background
and spatial cues
*  Modulating the attention
networks of the two
hemispheres, e.g., by using
*  meditation / relaxation
+  EEG Biofeedback

Zaidel, Trejo, Rosipal (2010-2014), PDT, UCLA

Ve

cue

Stimuli not to size

Figure 1: The sSLANT as adapted from Greene et al, 2008
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Experiment 2 - LANT: Patterns of Hemispheric Specialization and Interaction

¢ Direct Access

Left and right brain hemispheres
processes task information
differently, independently and
simultaneously
Modes of hemispheric interaction
*  There is complementary RT
hemispheric specialization
+  Theleft hemisphere is

linguistic, numerical, analytic,
individualistic, non-

conventional . Ca”osal Relay

«  The right hemisphere is visuo-
spatial, synthetic, social,
emotional
*  Complex tasks can be optimized
by division of labor
*  When resources are limited each
hemisphere can monitor errors in
the other
*  Conditions of overload and RT
fatigue can be ameliorated by
modulating attention in the two
hemispheres
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Experiment 2 - LANT: Performan
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Experiment 3 - Motor Related Mirror-box Training

O "'j = p 3
m A block of 10 different upper-arm and hand movements following
physical training of subjects after stroke.

m Four blocks including mirror-box, blinded mirror-box, bimanual
and single hand movements.

m Control group of healthy volunteers.

Rosipal et al. (2013-2017), SAS

Roman Rosipal Multi-way Data Analysis in Cognitive and Motor-related Tasks



central sulcus

Cerebral Cortex
parietal lobe « the outermost layers of brain
) * 2-4 mm thick (human)
E:clfepetal

Structure of a Typical Neuron

Axon terminal

Nucleus

Schwann cell
Myelin sheath

[m]

=)

12N Ge



Data - EEG Sources
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Data - EEG Sample
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Analysis Tools - APECSgui

Software:
proprietary m-codes developed by PDT, LLC, and subroutines from
the N-way toolbox for Matlab (Andersson and Bro, 2000)

) APECSpui CEX

Step 3: TrainvalTest Module

Save weights (BCI2000, Xis)

Rosipal, Trejo (2010-2014), PDT
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Spectral EEG Data Representation

m After standard pre-processing, EEG data segmented into epochs
(usually 2 to 4 sec long)
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Spectral EEG Data Representation

m After standard pre-processing, EEG data segmented into epochs
(usually 2 to 4 sec long)

m Spectral representation: FFT, Welch, Thomson multitaper, etc.
estimate of the power spectrum density; that is the distribution of
power per unit frequency

Pxx(f): Fx(f)F;(f)

where F,(f) is the Fourier transform of the signal x and x
indicates the complex conjugate
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Spectral EEG Data Representation

m After standard pre-processing, EEG data segmented into epochs
(usually 2 to 4 sec long)

m Spectral representation: FFT, Welch, Thomson multitaper, etc.
estimate of the power spectrum density; that is the distribution of
power per unit frequency

3 An examle of the power spectral density estimate
Subject B, electrode Cz

where Fy(f
indicates th
m Example:

25

05
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Coherence EEG Data Representation

m Coherence representation: Cross power spectra density Py, (f),

Py (f) = F(H)Fy(f)

y
or magnituted squared (coherence)
[Py ()P
Cy(f)= —F=—
) = B 1Py (1
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Data Structure

Electrodes

EEG Frequency

m Data matrix construction: X/« xk)
| - time segments
J - electrodes or electrode pairs
K - PSD or CSD (coherences)
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Bilinear Unfolding

Dim2&3
Dim1&3
Dim1 &2

T_,Dim 1 T—) Dim 2 T—) Dim 3

m Representing all experimental factors in one dimension &
observations (trials) in second dimension

m Contrast each dimension vs. pair of the other two
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Bilinear Unfolding - Modelling

Factor Analysis

X, = bf+e

F b,
Z > a;

Principal Component Analysis (PCA)
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Bilinear Unfolding - Regression/Classification

Partial Least Squares

> Data sets:

X (n objects
Y (n

x N, variables)
xM

obkjects responses)

» Bilinear decomposition:
X=TPT+E
Y=UQT+F
where:
T,U matrices of score vectors (LV, components)
P,Q matrices of loadings
E,F matrices of residuals (errors)

» Criterion:
max,-si=1[cov(Xr, Ys)I* = [cov(Xw, Yc)]?
= var(Xw)[corr(Xw, Yc)]2var(Yc)
= [cov(t,u)]?
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Bilinear Unfolding - (Kernel) PLS - Regression

o8 kernel PLS
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Rosipal,R & Trejo, LJ (2001). Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. Journal of Machine Learning
Research, 2(Dec):97-123.
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Mental Fatigue - Average Spectrum Analysis
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Red=Last 15 min
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Mental Fatigue - PLS Analysis
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Mental Fatigue - PLS analysis

Fatigued
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Multi-way Analysis

PARAFAC
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PARAFAC model

m The PARAFAC model with F factors: decomposition of the data
matrix X using three loading matrices, A, B, and C with elements
ajf, byr, and cyy

F
Xiik = Z a,'fbijkf =+ €ijk
f=1
m The criterion:
F
min = || xj — Z ayrbjrci||®

ajf,bjr,Cu 1
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Multi-way Analysis
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Mental fatigue - PARAFAC coherence analysis

ARO Coniract No. W91 INFUSCO121
PDT Report No. UAOIBFOG36B131

APECS Final Report
September 15,2009
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Multi-way PLS (N-PLS)

Multi-way PLS (n-PLS)

F G a,— spectral atom
b b;— spatial atom
o EEG - f c;— temporal atom
£ =] 3
—
frequency max | covariance
F Uf v;— workload atom
o — u;— temporal atom
El| Labels
£ ~ V¢

workload condition
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NPLS Fatigue Prediction
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NPLS Fatigue Prediction

Subject 107 / Day2 / NPLS4
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PARAFAC Analysis of Motor Related Training
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Multi-way Analysis and Inverse Cortical Mapping - A Way to Stabilize and Train BCI?
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Conclusions

m Results show that mental fatigue (workload, engagement - not
presented here) can be tracked by EEG components isolated
using PARAFAC or NPLS atoms.

m The mental fatigue related atoms were found to be remarkably
stable.

m We observed similarly promising and remarkable results on
several different data sets monitoring cognitive. status

m The concept of multi-way analysis will be implemented in

BCl-robot-assisted system design for neurorehabilitation of
patients after stroke.
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Detailed Results

B http://aiolos.um.savba.sk/~roman/
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